Cho 2 góc kề bù xOy và yOz, biết góc xOy = 70^0.
a) Tính góc yOz
b) Vẽ tia Om là tia phân giác của góc xOy, tia On là tia phân giác của góc yOz. Chứng tỏ mOn là góc vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)
\(\Leftrightarrow3\cdot\widehat{yOz}=180^0\)
\(\Leftrightarrow\widehat{yOz}=60^0\)
\(\Leftrightarrow\widehat{xOy}=120^0\)
a. Có: ˆxOyxOy^ và ˆyOzyOz^ là 2 góc kề bù
⇒ˆxOy+ˆyOz=180o⇒xOy^+yOz^=180o
Thay số: 60o+ˆyOz=180oˆyOz=180o−60oˆyOz=120o60o+yOz^=180oyOz^=180o−60oyOz^=120o
b. Có: Ot là tia phân giác của góc ˆxOyxOy^
⇒ˆxOt=ˆtOy=ˆxOy2=60o2=30o⇒xOt^=tOy^=xOy^2=60o2=30o
Om là tia phân giác của góc ˆyOzyOz^
⇒ˆyOm=ˆmOz=ˆyOz2=120o2=60o⇒yOm^=mOz^=yOz^2=120o2=60o
Có: Tia Oy nằm giữa 2 tia Ox và Oz
Tia Ot nằm giữa 2 tia Ox và Oy
Tia Om nằm giữa 2 tia Oy và Oz
⇒⇒ Tia Oy nằm giữa 2 tia Om và Ot
⇒ˆtOy+ˆyOm=ˆtOm⇒tOy^+yOm^=tOm^
Thay số: 30o+60o=ˆtOm⇒ˆtOm=90o30o+60o=tOm^⇒tOm^=90o
⇒ˆtOm⇒tOm^ là góc vuông.
Ta có \(\widehat{MON}=\widehat{yOM}+\widehat{yON}=\dfrac{1}{2}\widehat{xOy}+\dfrac{1}{2}\widehat{yOz}=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot180=90\)
Vậy ...
Hình tự vẽ nha
Ta có:xoy+yoz=180(2 góc kề bù)
(=)xon+noz+zom+yom=180
(=)2*noz+2*zom=180
(=)2(noz+zom)=180
(=)noz+zom=90
=>dpcm
a)
Sửa đề: Tính \(\widehat{yOz}\)
Ta có: \(\widehat{xOy}+\widehat{yOz}=180^0\)(hai góc kề bù)
\(\Leftrightarrow50^0+\widehat{yOz}=180^0\)
hay \(\widehat{yOz}=130^0\)
Vậy: \(\widehat{yOz}=130^0\)