từ điểm M nằm ngoài (O) vẽ tiếp tuyến MA,MB và cát tuyến MCD (O nằm trong góc BMD)
a, c/m MAOB nội tiếp
b, c/m góc MAB = góc MOA và MA^2=MC*MD
c, đoạn thẳng MO cắt AB tại H, cắt (O) tại I. c/m OH*OM+MC*MD=MO^2
d, c/m OHCD nội tiếp
e, c/m CI là phân giác góc MCH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: MAOB nội tiếp
=>góc MAB=góc MBA=góc MOA
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
OH*OM+MC*MD
=OA^2+MA^2=OM^2
d: MH*MO=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng với ΔMDO
=>góc OHC+góc ODC=180 độ
=>OHCD nội tiếp
a: góc MAO+góc MBO=90+90=180 độ
=>MAOB nội tiếp
ΔOCD cân tại O
mà OK là trung tuýen
nên OK vuông góc CD
Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
góc OHE+góc OKE=90+90=180 độ
=>OHEK nội tiếp
b: Xét ΔMAE và ΔMKA có
góc MAE=góc MKA
góc AME chung
=>ΔMAE đồng dạng với ΔMKA
=>MA/MK=ME/MA
=>MA^2=MK*ME=MC*MD
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồg dạngvơi ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
vì sao MAC=MDA phải giải thích chứ ko ai chép ngu thế
1, Vì MA ; MB lần lượt là tiếp tuyến (O) với A;B là tiếp điểm
=> ^MAO = ^MBO = 900
Xét tam giác MAOB có ^MAO + ^MBO = 1800
mà 2 góc đối Vậy tứ giác MAOB là tứ giác nt 1 đường tròn
2, Xét tam giác MAC và tam giác MDA
^M _ chung
^MAC = ^MDA ( cùng chắn cung AC )
Vậy tam giác MAC ~ tam giác MDA (g.g)
\(\dfrac{MA}{MD}=\dfrac{MC}{MA}\Rightarrow MA^2=MD.MC\)
3, Ta có AM = MB ( tc tiếp tuyến cắt nhau )
OB = OA = R
Vậy MO là đường trung trực
Xét tam giác MAO vuông tại A, đường cao AH
AO^2 = OH . OM ( hệ thức lượng )
\(\Rightarrow OM.OH+MC.MD=AO^2+AM^2=OM^2\left(pytago\right)\)
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: Xet ΔMBC và ΔMDB có
góc MBC=góc MDB
góc BMC chung
=>ΔMBC đồng dạng với ΔMDB
=>MB/MD=MC/MB
=>MB^2=MD*MC
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=180^0\)
nên MAOB là tứ giác nội tiếp
Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
mà OA=OB
nên OM là đường trung trực của AB
=>OM⊥AB
b: Xét ΔMAC và ΔMDA có
\(\widehat{MAC}=\widehat{MDA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC∼ΔMDA
SUy ra: MA/MD=MC/MA
hay \(MA^2=MC\cdot MD\left(1\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\left(2\right)\)
Từ (1) và (2) suy ra \(MC\cdot MD=MH\cdot MO\)
mình bổ sung OM vuông AB nhé
a, Ta có : AM = MB ( tc tiếp tuyến cắt nha )
OA = OB => OM là đường trung trực đoạn AB
=> OM vuông AB
b, Xét tam giác MBC và tam giác MDB có :
^M _ chung ; ^MBC = ^MDB ( cùng chắn cung BC )
Vậy tam giác MBC ~ tam giác MDB ( g.g )
=> MB/MD=MB/MC => MB^2 = MD.MC (1)
c, Vì MB là tiếp tuyến đường tròn (O) với B là tiếp điểm
=> ^MBO = 900
Xét tam giác MBO vuông tại B, đường cao BH
Ta có : MB^2 = MH . MO ( hệ thức lượng ) (2)
Từ (1) ; (2) suy ra MC . MD = MH . MO
a: góc MAO+góc MBO=180 độ
=>MAOB nội tiếp
b: MAOB nội tiếp
=>góc MAB=góc MBA=góc MOA
Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA/MD=MC/MA
=>MA^2=MD*MC
c: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB
OH*OM+MC*MD
=OA^2+MA^2=OM^2
d: MH*MO=MC*MD
=>MH/MD=MC/MO
=>ΔMHC đồng dạng với ΔMDO
=>góc OHC+góc ODC=180 độ
=>OHCD nội tiếp