cho a,b,c,d thuộc Z thỏa mãn a3+b3=2(c3-8d3). chứng minh a+b+c+d chi hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$a^3+b^3=2(c^3-8d^3)$
$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$
$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$
Khi đó:
$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$
$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:
$a^3+b^3+c^3+d^3\vdots 3$
$3ab(a+b)\vdots 3$
$3cd(c+d)\vdots 3$
$3(a+b)(c+d)(a+b+c+d)\vdots 3$
Vậy:
$(a+b+c+d)^3\vdots 3$
$\Rightarrow a+b+c+d\vdots 3$
Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).
Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).
Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).
Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).
Vậy abc chia hết cho 14.
Do \(0\le a,b,c\le1\)
nên\(\left\{{}\begin{matrix}\left(a^2-1\right)\left(b-1\right)\ge0\\\left(b^2-1\right)\left(c-1\right)\ge0\\\left(c^2-1\right)\left(a-1\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b-b-a^2+1\ge0\\b^2c-c-b^2+1\ge0\\c^2a-a-c^2+1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2b\ge a^2+b-1\\b^2c\ge b^2+c-1\\c^2a\ge c^2+a-1\end{matrix}\right.\)
Ta cũng có:
\(2\left(a^3+b^3+c^3\right)\le a^2+b+b^2+c+c^2+a\)
Do đó \(T=2\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)\)
\(\le a^2+b+b^2+c+c^2+a\)\(-\left(a^2+b-1+b^2+c-1+c^2+a-1\right)\)
\(=3\)
Vậy GTLN của T=3, đạt được chẳng hạn khi \(a=1;b=0;c=1\)