Cho đường tròn tâm O và một điểm M nằm ngoài đường tròn kẻ hai tiếp tuyến MA và MB và cát tuyến MCD với đường tròn (O). gọi H là giao điểm của OM và AB.đường kính AK của (O) tia MO ctắ CK tại E
CM AE//DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔMAC và ΔMDA có
góc MAC=góc MDA
góc AMC chung
=>ΔMAC đồng dạng với ΔMDA
=>MA^2=MC*MD=MH*MO
=>MC/MO=MH/MD
=>ΔMCH đồng dạng với ΔMOD
=>góc MCH=góc MOD
=>góc HOD+góc HCD=180 độ
=>HODC nội tiếp
MO là trung trực của AI => MO vuông góc AI, có BI vuông góc AI => MO || BI
Ta thấy MA.MI là hai tiếp tuyến kẻ từ M đến (O), MCD là cát tuyến của (O), do đó \(\left(ICAD\right)=-1\)
Vì B nằm trên (O) nên \(B\left(ICAD\right)=-1\), mà MO || BI, MO cắt BC,BA,BD tại E,O,F nên O là trung điểm EF.
1: Xét (O) co
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét tứ giác AHEC có
góc AHE+góc ACE=180 độ
=>AHEC là tứ giác nội tiếp
2: Xét ΔMBA và ΔMAC có
góc MBA=góc MAC
góc BMA chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MB*MC=MH*MO