K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xet ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AD/DB=AE/EC

=>DE//BC

=>ΔADE đồng dạng với ΔABC

17 tháng 2 2022

Ghi rõ ra bạn ơi ko Hải nó đập :v

6 tháng 8 2018

Hình bạn tự vẽ nha.

a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\)\(AI=\frac{2}{3}AM\)

 \(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)

\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)

Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)

\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)

b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)

\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)

Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)

c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)

9 tháng 7 2021

lời giải của bạn rất hay !

 

NV
22 tháng 3 2023

Áp dụng định lý phân giác cho tam giác ABM:

\(\dfrac{AM}{BM}=\dfrac{AD}{BD}\) (1)

Áp dụng định lý phân giác cho tam giác ACM:

\(\dfrac{AM}{CM}=\dfrac{AE}{CE}\) (2)

Mà AM là trung tuyến \(\Rightarrow BM=CM\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{CE}\Rightarrow\dfrac{AD}{AD+BD}=\dfrac{AE}{AE+CE}\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

\(\Rightarrow DE||BC\) (định lý talet đảo)

1 tháng 3 2022

gfvfvfvfvfvfvfv555

a: BC=2MB=90cm

Xét ΔAMB có MD là phân giác

nên AD/AM=DB/BM

=>AD/30=DB/45

=>AD/2=DB/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)

Do đó: AD=20(cm); DB=30(cm)

b: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

21 tháng 4 2017

Giải bài 17 trang 68 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 7 2021

cho mk hỏi là tại sao MB=MC mà lại =>\(\dfrac{AM}{BM}=\dfrac{AM}{MC}\)dựa vào t/c j ạ