Chứng minh rằng với n∈N* ta có:
a) 8 x 2n + 2n + 1 có tận cùng bằng 0
b) 3n+3 - 2 x 3n + 2n+5 - 7 x 2n chia hết cho 25
c) 4n+3 + 4n+2 - 4n+1 - 4n chia hết cho 300.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) goi d la uoc chung cua 2n+1 va 2n+3
Suy ra 2n+1 chia het cho d va 2n+3 chia het cho d
Suy ra (2n+3)-(2n+1) chia het cho d
Suy ra 2 chia het cho d
MA d la uoc cua mot so le nen d=1
VAy 2n+1 va 2n+3 la so nguyen to cung nhau.
b) Goi d la uoc chung cua 2n+5 va 3n+7
Suy ra 2n+5 chia het cho d va 3n+7 chia het cho d
Suy ra 3(2n+5)-2(3n+7) chia het cho d
Suy ra 6n+15-6n-14 chia het cho d
Suy ra 1 chia het cho d
Suy ra d=1
Vay 2n+5 va 3n+7 la so nguyen to cung nhau.
Cau 2)
Vi 2n+1 luon luon chia het cho 2n+1
Suy ra 2(2n+1) chia het cho 2n+1
Suy ra 4n+2 chia het cho 2n+1(1)
Gia su 4n+3 chia het cho 2n+1 (2)
Tu (1) va (2) suy ra (4n+3)-(4n+2) chia het cho 2n+1
suy ra 1 chia het cho 2n+1
suy ra 2n+1 =1
2n=0
n=0
Vay n=0 thi 4n+3 chia het cho 2n+1.
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
1)
a) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\forall n\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
mà n∈N
nên \(n\in\left\{0;2;6\right\}\)
Vậy: Khi \(n\in\left\{0;2;6\right\}\) thì \(3n+2⋮n-1\)
b) Ta có: \(n^2+2n+7⋮n+2\)
\(\Leftrightarrow n\left(n+2\right)+7⋮n+2\)
mà \(n\left(n+2\right)⋮n+2\)
hay \(7⋮n+2\)
\(\Leftrightarrow n+2\inƯ\left(7\right)\)
\(\Leftrightarrow n+2\in\left\{1;-1;7;-7\right\}\)
\(\Leftrightarrow n\in\left\{-1;-3;5;-9\right\}\)
mà n∈N
nên n=5
Vậy: Khi n=5 thì \(n^2+2n+7⋮n+2\)
2)
a) Ta có: \(2^{4n+2}+1\)
\(=2^{2\left(2n+1\right)}+1\)
\(=4^{2n+1}+1\)
Vì \(4^{2n+1}\) luôn có chữ số tận cùng là 4(2n+1 luôn lẻ ∀n∈N)
nên \(4^{2n+1}+1\) luôn có chữ số tận cùng là 5 ∀n∈N
hay \(2^{4n+2}+1⋮5\forall n\in N\)
a) Ta có 4n-5=4n-2+3
Do 4n-5 chia hết cho 2n-1 nên 4n-2+3 chia hết cho 2n-1
=> 3 chia hết cho n-1
=> n-1 thuộc Ư(3)={1;3;-1;-3}
=>n={2;4;0;-2}
Do n thuộc N nên n={2;4;0}
các câu còn lại tương tự
tick nha