Cho A =4444^4444. Gọi B là tổng các chữ số của A, C là tổng các chữ số của B, D là tổng các chữ số của C. Tính D
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
T
a có: a=(23)3.2009=86027<106027a=(23)3.2009=86027<106027
Vậy a có tối đa là 6026 chữ số
Do b là tổng các chữ số của a nên b⩽9.6026=54234b⩽9.6026=54234
Do c là tổng các chữ số của b nên c⩽5+9+9+9+9=41c⩽5+9+9+9+9=41
Do d là tổng các chữ số của c nên d⩽3+9=12d⩽3+9=12
Ta lại có:a=(29)2009=5122009≡(−1)2009≡−1a=(29)2009=5122009≡(−1)2009≡−1 ( mod 9 )
Suy ra: d≡−1d≡−1 ( mod 9 ) mà d⩽12d⩽12 nên d = 8
Vì A là số chia hết cho 9 mà B là tổng các chữ số của A nên B chia hết cho 9. Tương tự ta có C, D cũng chia hết cho 9 và đương nhiên khác 0. Vì A gồm 2004 chữ số mà mỗi chữ số không vượt quá 9 nên B không vượt quá 9x 2004 = 18036.
Do đó B có không quá 5 chữ số và C < 9 x 5 = 45. Nhưng C là số chia hết cho 9 và khác 0 nên C chỉ có thể là 9 ; 18 ; 27 ; 36. Dù trường hợp nào xảy ra thì ta cũng có D = 9.
Bạn tham khảo tại đây:
Câu hỏi của Bảo Chi Lâm - Toán lớp 6 - Học toán với OnlineMath