Cho tứ giác ABCD, AB = BC = CD. AC cắt BD tại N, AB và CD cắt nhau tại M. Đường thẳng đi qua B và song song với CD cắt đường thẳng AC song song AB tại P. Q là giao điểm PN và CD. Chứng minh:
a, PN song song với tia phân giác góc AMD
b, AM = DQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ \(\left\{{}\begin{matrix}AB//NF\\CD//ME\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\widehat{OMB}=\widehat{ONF}\\\widehat{OME}=\widehat{ONC}\end{matrix}\right.\)
\(\Rightarrow360^o-\left(\widehat{ONF}+\widehat{ONC}\right)=360^o-\left(\widehat{OMB}+\widehat{OME}\right)\)
\(\Rightarrow\widehat{FNC}=\widehat{EMB}\)
+ AB // NF \(\Rightarrow\frac{NF}{MB}=\frac{ON}{MO}\)
+ CD // ME \(\Rightarrow\frac{NC}{ME}=\frac{ON}{OM}=\frac{NF}{MB}\)
\(\Rightarrow\frac{NC}{NF}=\frac{ME}{MB}\)
+ ΔBME ∼ ΔFNC ( c.g.c )
\(\Rightarrow\widehat{BEM}=\widehat{FCN}\)
+ ME // CD \(\Rightarrow\widehat{MEA}=\widehat{ACN}\)
\(\Rightarrow\widehat{MEA}+\widehat{BEM}=\widehat{ACN}+\widehat{NCF}\)
\(\Rightarrow\widehat{BEA}=\widehat{ACF}\) => BE // CF