K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AFB=1/2*sđ cung AB=90 độ

góc KHB+góc KFB=90 độ

=>BHKF nội tiếp

b: Xét ΔBHE vuông tại H và ΔBFA vuông tại F có

goc B chung

=>ΔBHE đồng dạng với ΔBFA

=>BH/BF=BE/BA

=>BH*BA=BF*BE

20 tháng 4 2016

 bạn gì đó giúp mình giải bài toán này vs

21 tháng 1 2022

a) Xét (O): E \(\in\) (O) (gt).

\(\Rightarrow\) \(\widehat{AEB}=90^o\) (Góc nội tiếp).

Xét tứ giác BEFI:

\(\widehat{AEB}+\widehat{CIB}=90^o+90^o=180^o.\)

Mà 2 góc này ở vị trí đối nhau.

\(\Rightarrow\) BEFI là tứ giác nội tiếp đường tròn.

b) Xét (O): \(CD\perp AB\) tại I (gt).

                  AB là đường kính; CD là dây (gt).

\(\Rightarrow\) I là trung điểm của CD. 

Xét tam giác ACD: 

AI là đường trung tuyến (I là trung điểm của CD).

AI là đường cao \(\left(AI\perp CD\right).\)

\(\Rightarrow\) Tam giác ACD cân tại A. \(\Rightarrow\) AC = AD (Tính chất tam giác cân).

Xét (O): AC = AD (cmt). \(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{AD}.\)

Xét (O): \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AD}\) (Góc nội tiếp).

Mà \(sđ\stackrel\frown{AD}=sđ\stackrel\frown{AC}\left(cmt\right).\)

\(\Rightarrow\) \(\widehat{ACF}=\dfrac{1}{2}sđ\stackrel\frown{AC}.\)

Mà \(\widehat{AEC}=\dfrac{1}{2}sđ\stackrel\frown{AC}\) (Góc nội tiếp).

\(\Rightarrow\widehat{ACF}=\widehat{AEC}.\)

Xét tam giác ACF và tam giác AEC:

\(\widehat{A}chung.\)

\(\widehat{ACF}=\widehat{AEC}\left(cmt\right).\)

\(\Rightarrow\) Tam giác ACF \(\sim\) Tam giác AEC (g - g).

\(\Rightarrow\) \(\dfrac{AC}{AE}=\dfrac{AF}{AC}\) (2 cạnh tương ứng tỉ lệ).

\(\Rightarrow AC^2=AE.AF\left(đpcm\right).\)

14 tháng 7 2017

a, Học sinh tự chứng minh

b, DADB vuông tại D, có đường cao DH Þ  A D 2  = AH.AB

c,  E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ;  E A C ^ = K H C ^  (Tứ giác AKCH nội tiếp)

=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0