K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

Ta có:

  • AB = AC (tam giác ABC vuông tại A)
  • AM là trung tuyến của tam giác ABC (điểm M là trung điểm của BC)
  • MN vuông góc AC và MN = MH

Khi đó, ta có:

  • Tam giác ABM và ACM là hai tam giác cân (AB = AM và AC = AM), nên AM là đường trung trực của đoạn BM và đoạn CM.
  • Gọi I là giao điểm của đường thẳng MN và BC. Ta có MI là đường trung trực của đoạn BC.
  • Vì MN = MH nên tam giác MHN là tam giác cân tại M, nên đường trung trực của đoạn HN cũng là đường trung trực của đoạn BC, do đó đường trung trực của đoạn HN cũng cắt đường trung trực của đoạn BC tại I.

Do AM là đường trung trực của đoạn BM và đoạn CM, và MI là đường trung trực của đoạn BC, nên ta có AM và MI là hai đường trùng nhau, do đó A, M, I thẳng hàng.

Từ đó suy ra:

  • Góc AMB = góc AMC (do AM là đường trung trực của đoạn BM và đoạn CM)
  • Góc AHB = góc AHC (do AB = AC và HN là đối của MN)
  • Góc AMB + góc AHB = 90 độ (do MN vuông góc AC)
  • Góc AMC + góc AHC = 90 độ (do MN vuông góc AC)

Vậy ta có:

góc AMB + góc AHB = góc AMC + góc AHC

Do đó, tam giác AMB bằng tam giác AMC theo trường hợp góc - góc - góc của hai tam giác.

3 tháng 5 2023

- Vì AM là trung tuyến tam giác ABC (gt)
=> BM = CM (định nghĩa)
- Xét tam giác AMB và tam giác AMC, có: 
   + BM = CM (cmt)
   + AB = AC (gt)
   + Chung AM 
=> tam giác AMB = tam giác AMC (ccc)
- Vậy tam giác AMB = tam giác AMC theo trường hợp cạnh - cạnh - cạnh

a: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔDBC có

BA là trung tuyến

BA=CD/2

=>ΔDBC vuông tại B

c: ΔABD cân tại A có AE là đường cao

nên E là trung điểm của BD

d: Xét ΔDBC có BE/BD=BM/BC

nên EM//DC

6 tháng 7 2023

loading...

loading...

28 tháng 6 2021

b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .

=> AM = BM = CM = KM .

Xét \(\Delta MKC\)\(\Delta MAB\) có :

\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)

=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )

- Xét tứ giác ABKC có :

AM = BM = CM = KM và tam giác ABC vuông tại A .

=> Tứ giác ABKC là hình chữ nhật.

=> KC vuông góc với AC .

c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :

\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)

28 tháng 6 2021

thanks

 

a) Xét tam giác ABM và tam giác DCM có:
AM = DM (gt)
BM = MC (gt)
góc BMA = góc DMC (2 góc đối đỉnh)
=> tam giác ABM = tam giác DCM (c.g.c)
b) Vì tam giác ABM = tam giác DCM (cmt)
=> góc ABM = góc DCM (2 góc tương ứng)
mà 2 góc này so le trong
=> AB//DC
c) Xét tam giác ABM và tam giác ACM có:
AB = AC (gt)
BM = MC (gt
AM là cạnh chung
=> tam giác ABM bằng tam giác ACM (c.c.c)
=> góc BMA bằng góc AMC
=> góc BMA = góc AMC = 1/2(góc BMA + góc AMC)
mà góc BMA + góc AMC = 180o (2 góc kề bù)
=> góc BMA = góc AMC = 1/2.180o = 90o
=> AM vuông góc với BC

9 tháng 12 2018

Câu c) bạn ghi lại chính xác giúp!

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại MA. chứng minh tam giác ABC bằng tam giác MBEB. chứng minh DM vuông góc với BCC .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IACcâu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)A. chứng minh tam giác ABD bằng tam giác ACDB. Vẽ...
Đọc tiếp

1. Cho tam giác ABC vuông tại A. tia phân giác góc B cắt AC tại D. từ A kẻ AE vuông góc BD tại E và cắt BC tại M

A. chứng minh tam giác ABC bằng tam giác MBE

B. chứng minh DM vuông góc với BC

C .Kẻ AH vuông góc với BC tại I. Chứng minh AM là tia phân giác của góc IAC

câu 2: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ tia phân giác AD của góc A (D thuộc BC)

A. chứng minh tam giác ABD bằng tam giác ACD

B. Vẽ đường trung tuyến của tam giác ABC cắt cạnh AC tại G. chứng minh G là trọng tâm của tam giác ABC

C. Gọi H là trung điểm của cạnh DC. qua h Vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh tam giác DEC cân

D. Chứng minh ba điểm B, G, E thẳng hàng

Câu 3 Cho tam giác ABC vuông tại A. Vẽ trung tuyến AM của tam giác ABC, Kẻ MH vuông góc với AC. Trên tia đối của tia MH đặt điểm  K sao cho MK bằng MH

a. chứng minh tam giác MHC bằng tam giác MKB và BK vuông góc với KH

B. Chứng minh AB song song với HK và BK = AH.

C. Vẽ BH cắt AB tại g. Gọi I là trung điểm của AB. Chứng minh ba điểm C, G, I thẳng hàng

câu4 Cho tam giác ABC vuông tại A. gọi M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD = MA.

A . chứng minh tam giác MCD bằng tam giác MBD và AC song song với BD

B. Gọi I là trung điểm AM, J là trung điểm BM. AJ cắt BI tại G. Chứng minh tam giác GAB là tam giác cân

Câu 5 cho tam giác ABC vuông tại A (AB bé hơn AC). vẽ BD là tia phân giác của góc ABC (D thuộc AC). trên đoạn BC lấy điểm E sao cho BE bằng BA

a chứng minh tam giác ABD bằng tam giác EBD .Từ đó suy ra góc BED là góc vuông

b.  tia ED  cắt tia BA tại EF. Chứng minh tam giác BED cân

C. Chứng minh tam giác AFC bằng tam giác  ECF

D.Chứng minh: AB + AC >DE+BC

câu 6: Cho tam giác ABC vuông tại A. Vẽ đường phân phân giác BD của tam giác ABC và E là hình chiếu của D trên BC

a. chứng minh tam giác ABD bằng tam giác EBD và AE vuông góc với BD

B. Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh tam giác ABC bằng tam giác AFC 

C. Qua A vẽ đường thẳng vuông góc với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng

câu 7: Cho tam giác ABC cân tại A (góc A bé hơn 90 độ). vẽ AD là phân giác của góc A (D thuộc BC)

A . Chứng minh tam giác ABD bằng tam giác ACD

B. lấy H là trung điểm của AB. Trên tia đối của tia HC lấy điểm K sao cho HK = HC. Chứng minh rằng AK = BC

c. CH cắt AD tại G. Chứng minh (BA+BC)÷6 >GH

4
28 tháng 4 2019

bài 1 đề bài có sai ko?

29 tháng 4 2019

Đề đúng nha bạn

25 tháng 12 2016

.

25 tháng 12 2016

.