K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

1: \(BC=\sqrt{18^2+24^2}=30\left(cm\right)\)

2: Xét ΔABC vuông tại A và ΔIEC vuông tại I có

góc C chung

=>ΔABC đồng dạng với ΔIEC

b: 

IC=BC/2=15cm

ΔABC đồng dạng với ΔIEC
=>AB/IE=BC/EC=AC/IC

=>18/IE=30/EC=24/15=8/5

=>IE=11,25cm; EC=18,75cm

26 tháng 5 2020

chij vào vndoc á xong rùi kéo xuống nó vẹ cho

24 tháng 5 2020

a, Xét △ABC vuông tại A và △MDC vuông tại M

Có: ∠ACB là góc chung

=> △ABC ᔕ △MDC (g.g)

b, Xét △ABC vuông tại A có: AB2 + AC2 = BC2 (định lý Pytago)

=> 362 + 482 = BC2  => BC2 = 3600 => BC = 60 (cm)

Vì M là trung điểm BC (gt) => MB = MC =  BC : 2 = 60 : 2 = 30 (cm)

Vì △ABC ᔕ △MDC (cmt) \(\Rightarrow\frac{AB}{MD}=\frac{AC}{MC}\) \(\Rightarrow\frac{36}{MD}=\frac{48}{30}\)\(\Rightarrow MD=\frac{36.30}{48}=22,5\) (cm)

và \(\frac{AC}{MC}=\frac{BC}{DC}\)\(\Rightarrow\frac{48}{30}=\frac{60}{DC}\)\(\Rightarrow DC=\frac{30.60}{48}=37,5\) (cm)

c, Xét △BME vuông tại M và △BAC vuông tại A

Có: ∠MBE là góc chung

=> △BME ᔕ △BAC (g.g)

\(\Rightarrow\frac{BM}{AB}=\frac{BE}{BC}\) \(\Rightarrow\frac{30}{36}=\frac{BE}{60}\)\(\Rightarrow BE=\frac{30.60}{36}=50\) (cm)

 Vì M là trung điểm BC (gt) mà ME ⊥ BC (gt)

=> ME là đường trung trực BC

=> EC = BE

Mà BE = 50 (cm)

=> EC = 50 (cm)

e, Ta có: \(\frac{S_{\text{△}MDC}}{S_{\text{△}ABC}}=\frac{\frac{1}{2}.MD.MC}{\frac{1}{2}.AB.AC}=\frac{22,5.30}{36.48}=\frac{675}{1728}=\frac{25}{64}\)

P/s: Sao nhiều câu cùng tính EC vậy? Pls, không làm loãng câu hỏi

Bài làm 

@Mấy bạn bên dưới: nghiêm cấm không trả lời linh tinh, nhất bạn luffy toán học, bạn rảnh đến nỗi cũng hùa theo họ mà spam linh tinh à. 

a) Xét tam giác ABC và tam giác MDC có:

\(\widehat{BAC}=\widehat{DMC}=90^0\)

\(\widehat{BCA}\)chung

=> Tam giác ABC ~ tam giác MDC ( g - g )

b) Xét tam giác ABC vuông tại A có:

Theo pytago có:

BC2 = AB2 + AC2 

hay BC2 = 362 + 482 

hay BC2 = 1296 + 2304

=> BC2 = 3600

=> BC = 60 ( cm )

Mà M là trung điểm BC
=> BM = MC = BC/2 = 60/2 = 30 ( cm )

Vì tam giác ABC ~ tam giác MDC ( cmt )

=> \(\frac{AB}{MD}=\frac{BC}{DC}=\frac{AC}{MC}\)

hay \(\frac{36}{MD}=\frac{60}{DC}=\frac{48}{30}\)

=> \(MD=\frac{36.30}{48}=22,5\left(cm\right)\)

=> \(DC=\frac{60.30}{48}=37,5\left(cm\right)\)

c) Xét tam giác MBE và tam giác ABC có:

\(\widehat{BME}=\widehat{BAC}=90^0\)

\(\widehat{ABC}\)chung

=> Tam giác MBE ~ tam giác ABC ( g - g )

=> \(\frac{ME}{AC}=\frac{BM}{AB}\)

hay \(\frac{ME}{48}=\frac{30}{36}\Rightarrow ME=\frac{48.30}{36}=40\left(cm\right)\)

Xét tam giác MEC vuông tại M có:

EC2 = MC2 + ME2 

hay EC2 = 302 + 402 

=> EC2 = 900 + 1600

=> EC2 = 50 ( cm )

a) Vì tam giác MDC ~ Tam giác ABC

=> \(\frac{S_{\Delta MDC}}{S_{\Delta ABC}}=\left(\frac{MD}{AB}\right)^2=\left(\frac{22,5}{36}\right)^2=\left(\frac{5}{8}\right)^2=\frac{25}{36}\)

Câu c, d và câu đ giống nhau ? 

2 tháng 5 2021

Giải hộ mình câu cuối phần d nha, 😊

a: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Xét ΔABC có AB<AC<BC

nên \(\widehat{C}< \widehat{B}< \widehat{A}\)

b: Xét ΔIMA vuông tại M và ΔIMC vuông tại M có

IM chung

MA=MC

Do đó; ΔIMA=ΔIMC

c: Xét ΔCAB có 

M là trung điểm của AC

MI//AB

Do đó: I là trung điểm của BC

Ta có: ΔABC vuông tại A

mà AI là đường trung tuyến

nên AI=BC/2

16 tháng 4 2022

cảm ơn bạn yêu nhé

a: Xét ΔDMC vuông tại M và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔDMC\(\sim\)ΔABC