Xét đa thức P(x)=ax2+bx+c ( a khác 0). Chứng minh rằng:
a, Nếu a+b+c=0 thì P(x) có 2 nghiệm là 1 và \(\frac{c}{a}\)
b, Nếu a-b+c=0 thì P(x) có 2 nghiệm là -1 và \(\frac{-c}{a}\)
Ai làm đúng và nhanh nhất mình sẽ tick!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Giả sử P(x) có một nghiệm là 1 thì:
p(1)=a*1^2+b*1+c
=a+b+c
Mà a+b+c=0
=>p(1)=0
=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)
b)Giả sử P(x) có 1 nghiệm là -1 thì
p(-1)=a*(-1)^2+b*(-1)+c
=a-b+c
Mà a-b+c=0
=>p(-1)=0
=> đa thức p(x) có một nghiệm là -1(ĐPCM)
c)TA có:
p(1)=a*1^2+b*1+c=a+b+c
p(-1)=a.(-1)^2+b*(-1)+c=a-b+c
Mà p(1)=p(-1)
=>a+b+c=a-b+c
=>a+b+c-a+b-c=0
=>2b=0 =>b=0
+) Với b=0 =>p(x)=ax^2+c (1)
=>p(-x)=a*(-x)^2+c=a*x+c (2)
Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)
a,a+b+c=0 <=>c=-a-b
Khi đ f(x)=ax^2+bx-a-b
f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)
=>f(x) có nghiệm x=1
b,a-b+c=0 <=>c=b-a
Khi đó f(x)=ax^2+bx+b-a
f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)
=>f(x) có nghiệm x=-1
* Chứng minh:
Phương trình a x 2 + b x + c = 0 có hai nghiệm x 1 ; x 2
⇒ Theo định lý Vi-et:
Khi đó : a.(x – x1).(x – x2)
= a.(x2 – x1.x – x2.x + x1.x2)
= a.x2 – a.x.(x1 + x2) + a.x1.x2
=
= a . x 2 + b x + c ( đ p c m ) .
* Áp dụng:
a) 2 x 2 – 5 x + 3 = 0
Có a = 2; b = -5; c = 3
⇒ a + b + c = 2 – 5 + 3 = 0
⇒ Phương trình có hai nghiệm
Vậy:
b) 3 x 2 + 8 x + 2 = 0
Có a = 3; b' = 4; c = 2
⇒ Δ ’ = 4 2 – 2 . 3 = 10 > 0
⇒ Phương trình có hai nghiệm phân biệt: