K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2023

Để 3n-1/2n+1 ∈ Z thì 3n-1⋮2n+1

Mà 2n+1 ⋮2n+1 => (3n-1)-(2n+1)⋮2n+1 => n-2⋮2n+1=> 2(n-2)⋮2n+1

=> 2n-4 ⋮2n+1

Mà 2n+1 ⋮2n+1 => (2n+1)-(2n-4) ⋮2n+1 =>5 ⋮2n+1

Mà n ∈ Z => 2n+1 ∈ Z

=> 2n+1 ∈ {1; 5; -1; -5}

=> n ∈ {0; 2; -1; -3}

Thử lại thỏa mãn.

Vậy n ∈ {0; 2; -1; -3}

Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1

=>\(2n-1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{1;0;3;-2\right\}\)

7 tháng 1 2023

      `2n^2+3n+3 | 2n-1`

`-`   `2n^2-n`           `n+2`

     ------------------

                `4n+3`

          `-`   `4n-2`

              ------------

                       `5`

`<=> (2n^2+3n+3) : (2n-1)=5`

`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)

`+, 2n-1=1=>2n=2=>n=1`

`+, 2n-1=-1=>2n=0=>n=0`

`+, 2n-1=5=>2n=6=>n=3`

`+,2n-1=-5=>2n=-4=>n=-2`

vậy \(n\in\left\{1;0;3;-2\right\}\)

12 tháng 1 2023

loading...

bạn xem có đúng ko nha .

12 tháng 1 2023

ta có n-1 ⋮ n-1
⇒3(n-1)⋮ n-1
⇒3n-3⋮ n-1
⇒(3n+2)-(3n-3)⋮ n-1
⇒5⋮ n-1
⇒(n-1)ϵ Ư(5)

   n-1 1 5 -1 -5
    n 2 6 0 -4


vậy n={2;6;0;-4}

 

Để 2n-3/3n+2 là số nguyên thì \(3\left(2n-3\right)⋮3n+2\)

\(\Leftrightarrow6n-9⋮3n+2\)

\(\Leftrightarrow3n+2\in\left\{1;-1;13;-13\right\}\)

mà n là số nguyên

nên \(n\in\left\{-1;-5\right\}\)

4 tháng 3 2022

\(\dfrac{6n-9}{3n+2}=\dfrac{2\left(3n+2\right)-13}{3n+2}=2-\dfrac{13}{3n+2}\Rightarrow3n+2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\)

3n+21-113-13
nloại-1loại-5

 

30 tháng 4 2023

Em đăng vào môn Toán nhé!

1 tháng 5 2023

A = \(\dfrac{6n-3}{3n+1}\) ( đk : 3n + 1 # 0  ⇒ n # -1/3)

\(\in\) Z ⇔ 6n - 3 ⋮ 3n + 1

           ⇒   6n + 2 - 5 ⋮ 3n + 1

           ⇒   2.( 3n + 1) - 5 ⋮  3n + 1

           ⇒                       5 ⋮ 3n + 1

          ⇒         3n + 1 \(\in\) { -5; -1; 1; 5}

          ⇒        n\(\in\) {-2; -2/3; 0; 4/3}

          vì n \(\in\) Z nên n \(\in\) { -2; 0}

          Vậy n \(\in\) { -2; 0}

             

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

NV
19 tháng 3 2023

\(\dfrac{5}{3n-1}\in Z\Rightarrow3n-1=Ư\left(5\right)\)

\(\Rightarrow\left[{}\begin{matrix}3n-1=-5\\3n-1=-1\\3n-1=1\\3n-1=5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}n=-\dfrac{4}{3}\left(ktm\right)\\n=0\\n=\dfrac{2}{3}\left(ktm\right)\\n=2\end{matrix}\right.\)

Vậy \(n=\left\{0;2\right\}\)

4 tháng 5 2022

Ta có A= (3n +10)/(n+3)
= [ 3(n+3) +1 ] /(n+3)
= 3 + 1/(n+3)
Để A nguyên thì 1/(n+3) cũng phải nguyên
tức 1 phải chia hết cho n+3
=> n + 3 = 1 hoặc n + 3 = -1;
Trường hợp: n+3 = 1 => n = -2 khi đó A = 3 + 1 = 4
Trường hợp: n+3 = -1 => n = -4 khi đó A = 3 -1 = 2

 

DD
16 tháng 6 2021

a) \(A=\frac{3-n}{n+1}=\frac{4-1-n}{n+1}=\frac{4}{n+1}-1\inℤ\)mà \(n\inℤ\)suy ra \(n+1\inƯ\left(4\right)=\left\{-4,-2,-1,1,2,4\right\}\)

\(\Leftrightarrow n\in\left\{-5,-3,-2,0,1,3\right\}\).

b) \(B=\frac{6n+5}{3n+2}=\frac{6n+4+1}{3n+2}=2+\frac{1}{3n+2}\inℤ\)mà \(n\inℤ\)suy ra \(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)

\(\Rightarrow n\in\left\{-1\right\}\)

c) \(C\inℤ\Rightarrow3C=\frac{6n+3}{3n+2}=\frac{6n+4-1}{3n+2}=2-\frac{1}{3n+2}\inℤ\) mà \(n\inℤ\)suy ra 

.\(3n+2\inƯ\left(1\right)=\left\{-1,1\right\}\)\(\Rightarrow n\in\left\{-1\right\}\)

Thử lại thỏa mãn.