Cho s=1/1×2+1/2×3+1/3×4+1/4×5+...1/2019×2020 chứng tỏ rằng s
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S = 1 + 2 + 2^2 + 2^3+2^4+2^5+...+2^2018+2^2019 . Chứng tỏ rằng S chia hết cho 3
giúp mik với ><
Ta có: S= 1+2+22+23+..............+22018+22019
S= (1+2+22+23)+............+(22016+22017+22018+22019)
S=1(1+2+22+23)+..........+22016(1+2+22+23)
S=1.(1+2+4+8)+.................+22016(1+2+4+8)
S=1.15+.....................+22016.15
S=15.(1+.....+22016)
S=3.5.(1+......+22016) \(⋮\) 3
Vậy S chia hết cho 3 ( đpcm).
\(S=1+3+3^2+...+3^{2019}\)
\(3S=3+3^2+3^3+...+3^{2020}\)
\(3S-S=\left(3+3^2+3^3+...+3^{2020}\right)-\left(1+3+3^2+...+3^{2019}\right)\)
\(2S=3^{2020}-1\)
Ta có S.3=3+32+33+...+32020
S.3-S=(3+32+33+...+32020)-(1+3+...+32019)
S.2= 32020-1
b)Biết S.2= 32020-1
suy ra s=(32020-1):2
chữ số tận cùng của S là [(34)505-1]:2
= [ (...1)-1]:2
= (...0):2
=0
Vậy chữ số hàng đơn vị của S là 0
\(\text{ ta có:}x=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\text{ thấy ngay }x>0;x< \frac{1}{1.2}+...+\frac{1}{2019.2020}\)
\(=1-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{2020}=1-\frac{1}{2020}< 1\text{ nên có đpcm}\)
thiếu đề :(