K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2020

Ta có: \(\hept{\begin{cases}a+b+c=20\\16a+2b+c=80\end{cases}}\)

=> \(\left(16a+2b+c\right)-\left(a+b+c\right)=80-20=60\)

=> \(15a+b=60\)

=> b = 60 - 15 a 

Mà a; b; c là số nguyên dương => a \(\in\){ 1; 2; 3; }

Khi đó: \(a+b+c=a+60-15a+c=20\)

=> \(c=14a-40\)

+) Với a = 1 => c = -26 ( loại )

+) Với a = 2 => c = -12 loại 

+) Với a = 3 => c = 2 ( nhận ) khi đó b = 15 

Vậy : M = 25.3 - 4.15 -2007.2= -3999.

15 tháng 11 2021

\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\left(\dfrac{a}{4}+\dfrac{b}{2}+\dfrac{3c}{4}\right)\\ A=\left(\dfrac{3a}{4}+\dfrac{3}{a}\right)+\left(\dfrac{b}{2}+\dfrac{9}{2b}\right)+\left(\dfrac{c}{4}+\dfrac{4}{c}\right)+\dfrac{1}{4}\left(a+2b+3c\right)\\ A\ge2\sqrt{\dfrac{3a}{4}\cdot\dfrac{3}{a}}+2\sqrt{\dfrac{b}{2}\cdot\dfrac{9}{2b}}+2\sqrt{\dfrac{c}{4}\cdot\dfrac{4}{c}}+\dfrac{1}{4}\cdot20\\ A\ge3+3+2+5=13\\ A_{min}=13\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\\c=4\end{matrix}\right.\)

24 tháng 3 2020

2) Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

NV
1 tháng 11 2021

\(P\le\sqrt{3\left(9a+16b+9b+16c+9c+16a\right)}=\sqrt{75\left(a+b+c\right)}=15\)

\(P_{max}=15\) khi \(a=b=c=1\)

1 tháng 11 2021

Thầy có thể viết rõ hơn chút không ạ? Em  thấy còn  mơ màng lắm thầy ạ