K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2022

8 tháng 4 2022

ủa lớp 5 lm lớp 8

a: Xét ΔABH vuông tai H và ΔACH vuông tại H có

AB=AC
AH chung

=>ΔAHB=ΔAHC

b: Xét ΔABC co

AH,CN là trung tuyến

AH cắt CN tại G

=>G là trọng tâm

c: Xét ΔABC có

H là trung điểm của CB

HE//AB

=>E là trung điểm của AC

=>B,G,E thẳng hàng

a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa A và C)

mà MB=NC(gt)

và AB=AC(ΔABC cân tại A)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác MNBC có MN//BC(cmt)

nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

c) Xét ΔAMN có 

E là trung điểm của AM(gt)

F là trung điểm của AN(gt)

Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)

Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà MN//BC(cmt)

nên EF//BC(3)

Xét hình thang MNCB(MN//CB) có 

H là trung điểm của MB(gt)

G là trung điểm của NC(gt)

Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)

Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)

Từ (3) và (4) suy ra EF//HG

Ta có: HG//BC(cmt)

nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{EHG}=\widehat{FGH}\)

Xét tứ giác EFGH có EF//HG(cmt)

nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)

Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)

nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

29 tháng 4 2019

Bài 1: Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2=>BC2=122+162=400=>BC=20(cm).

 Áp dụng Định lý:"Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền"cho tam giác ABC:AM=\(\frac{1}{2}\)BC=\(\frac{1}{2}\).20=10cm

Do G là trọng tâm nên:AG=\(\frac{2}{3}\)AM=\(\frac{2}{3}\).10\(\approx\)6.7cm

Bài 2:

E D B C A H

a) Xét \(\Delta\)ABD và \(\Delta\)ACE:

      ADB=AEC=90

      BAC:chung

      AB=AC(\(\Delta\)ABC cân tại A)

=> \(\Delta\)ABD =\(\Delta\)ACE (Cạnh huyền-góc nhọn)

b) \(\Delta\)ABD =\(\Delta\)ACE (chứng minh trên)=>AD=AE=> \(\Delta\)AED cân tại A

c) Dễ thấy: H là trực tâm của tam giác ABC

    Mà  \(\Delta\)ABC cân tại A 

    Nên H cũng đồng thời là tam đường tròn ngoại tiếp tam giác ABC 

    Hay AH là đường trung trực của tam giác ABC

a: Xét ΔACB có

BN.AM là đường trun tuyến

AM cắt BN tại G

=>G là trọng tâm

b: Xét ΔAKC có

CG,KN là trung tuyến

CG cắt KN tại P

=>P là trọng tâm

=>AP đi qua trung điểm của KC