tìm cặp số nguyên x,y biết (x-2)^2+(y+1)^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Coi phương trình trên là pt bậc 2 ẩn x tham số y
Ta có : \(\Delta=\left(y-1\right)^2-4\left(y+3\right)\)
\(=y^2-2y+1-4y-12\)
\(=y^2-6y-11\)
Pt có nghiệm khi \(\Delta=y^2-6y-11\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}y\le3-2\sqrt{5}\\y\ge3+2\sqrt{5}\end{cases}}\)
Để pt ban đầu có nghiệm nguyên thì \(\Delta\)phải là số chính phương
Đặt \(\Delta=k^2\left(k\inℕ\right)\)
\(\Leftrightarrow y^2-6y-11=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-20=k^2\)
\(\Leftrightarrow\left(y-3\right)^2-k^2=20\)
\(\Leftrightarrow\left(y-3-k\right)\left(y-3+k\right)=20\)
Vì y là số nguyên , k là số tự nhiên nên y - 3 - k < y - 3 + k và 2 số này đều nguyên
Lập bảng ước của 20 ra tìm đc y -> thế vào pt ban đầu -> tìm đc x (Nếu x;y mà ko nguyên thì loại)
\(\left(x+1\right)\left(y+2\right)=7\)
TH1 : \(\hept{\begin{cases}x+1=1\\y+2=7\end{cases}=>\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x+1=7\\y+2=1\end{cases}=>\hept{\begin{cases}x=6\\y=-1\end{cases}}}\)
mk giải nhé
a) x-1 1 7
y+2 7 1
x 2 8
y 5
vậy ( x;y) = ( 2;5)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(y+1\right)^2\ge0\forall y\end{cases}}\)
\(\Rightarrow\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)
Mà đề lại cho \(\left(x-2\right)^2+\left(y+1\right)^2=0\Rightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}\)
Vậy \(x=2;y=-1\)