Tìm số tự nhiên x, y thuộc Z biết:
a)xy+3x-7y=21
b)(x^2+2015).(x-2016)=0
Help me! thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1
a/ta có -|x+2015|<=0
=>2016-|x+2015|<=2016-0
A>=2016 vậy GTLN của A=2016 khi x=-2015
b/
ta có |y-2017|>=0
=>|y-2017|+2016>=0+2016
A>=2016 vậy GTNN của A=2016 khi x=2017
Tìm GTNN hoặc GTLN (nếu có)
a) B = 2013 - 3 /x + 2012/
b) C = (x+3)2 - 2010
c) D = 2017-5(x-3)2
d) E = 5-x phần 7-x
nhân 2 vế cho 2
=>2x2+2y2+2z2=2xy+2yz+2zx
=>2x2+2y2+2z2-2xy-2yz-2zx=0
=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0
=>(x-y)2+(y-z)2+(z-x)2=0
mà (x-y)2 >= 0 với mọi x,y
(y-z)2 >= 0 với mọi y,z
(z-x)2 >=0 với mọi z,x
=>(x-y)2+(y-z)2+(z-x)2 >= 0
mà theo đề:(x-y)2+(y-z)2+(z-x)2=0
=>(x-y)2=(y-z)2=(z-x)2=0
=>x=y
y=z
z=x
hay x=y=z
do đó x2015+y2015+z2015=32016
<=>x2015+x2015+x2015=32016
<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015
Vậy x=y=z=2015
a/ XY + 3X = 21 + 7Y
X ( Y + 3 ) = 7 ( Y+ 3 )
Suy ra : X = 7
Thay vào được biểu thức thỏa mãn suy ra được kết quả với mọi Y.
b/ XY + 3X = 11 + 2Y
X ( Y + 3) = 2 ( Y + 3 ) + 5
( X - 2) ( Y + 3 ) = 5
suy ra ( X - 2 ) thuộc ước của 5, kẻ bảng và tìm X , Y
Các bước tiếp theo tự làm được rồi nhé.
Ta có : xy + 3x - 7y = 21
=> xy + 3x - 7y - 21 = 0
=> x(y + 3) - (7y + 21) = 0
=> x(y + 3) - 7(y + 3) = 0
<=> (x - 7)(y + 3) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\y+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=7\\y=-3\end{cases}}\)
\(\dfrac{x}{2}=\dfrac{y}{3}\text{⇒}\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\text{⇒}\dfrac{y}{15}=\dfrac{z}{12}\)
⇒\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=\dfrac{-21}{-3}=7\)
⇒x=70;y=105;z=84
Có: \(x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\Leftrightarrow\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\)\(\Leftrightarrow x=y=z\)
Lại có: \(x^{2015}+y^{2015}+z^{2015}=3^{2016}\)
\(\Leftrightarrow x^{2015}+x^{2015}+x^{2015}=3^{2016}\)
\(\Leftrightarrow3x^{2015}=3^{2016}\)
\(\Leftrightarrow x=3\)
Vậy \(x=y=z=3\)
Ta có
xy + 3x - 7y = xy + 21 - 21 + 3x - 7y = xy + 3x + 21 - 21 - 7y
= x ( y + 3 ) + 21 - 7 ( 3 + y )
= x ( y + 3 ) - 7 ( 3 + y ) + 21
= ( x - 7 ) ( y + 3 ) + 21 = 21
= ( x - 7 ) ( y + 3 ) = 0
=> Nếu x - 7 = 0 => x = 7 ; y \(\in\) Z
=> Nếu y + 3 = 0 => y = -3 ; x \(\in\) Z
=> Nếu x - 7 = 0 và y + 3 = 0 thì x = 7 ; y = -3
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
b, \(\left(x^2+2015\right).\left(x-2016\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2==-2015\\x=2016\end{cases}}\)( \(x^2=-2015\)loại do \(x^2\ge0\))
Vậy x= 2016
a, \(xy+3x-7y=21\)
\(\Leftrightarrow x.\left(y+3\right)-7y-21=0\)
\(\Leftrightarrow x.\left(y+3\right)-7.\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right).\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-7\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)
a, xy + 3x - 7y = 21
=> x(y + 3) - 7y - 21 = 21 - 21
=> x(y + 3) - (7y + 21) = 0
=> x(y + 3) - 7(y + 3) = 0
=> (x - 7)(y + 3) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Vậy x = {7;-3}
b, (x2 + 2015)(x - 2016) = 0
\(\Rightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=2015\left(loại\right)\\x=2016\end{cases}}}\)
Vậy x = 2016