- Giúp tớ bài này nhé =)
Đề bài: Tìm đa thức bấc 2 biết: \(_{f\left(x\right)-f\left(x-1\right)=x}\)
Từ đó áp dụng tính: \(S=1+2+3+...+n\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đấy cũng là đề thi của huyện mình đấy.
Đây là kết quả của mik
Như ta biết đa thức bậc 2 có dạng tổng quát là: \(ax^2+bx+c\) (trong SGK có đấy)
Suy ra: \(f\left(x-1\right)=a\left(x-1\right)^2+b\left(x-1\right)+c\)
Suy ra: \(f\left(x\right)-f\left(x-1\right)=ax^2+bx+c-a\left(x-1\right)^2-b\left(x-1\right)-c\)
\(=2ax-a+b\)(bn sử dụng hằng đẳng thức để tách \(\left(x-1\right)^2=x^2-2x+1\))
Ta có: \(2ax-a+b=x\)\(\Rightarrow\hept{\begin{cases}2a=1\\b-a=0\end{cases}\Rightarrow\hept{\begin{cases}a=\frac{1}{2}\\b=\frac{1}{2}\end{cases}}}\)
Vậy đa thức cần tìm là \(f\left(x\right)=\frac{1}{2}x^2+\frac{1}{2}x+c\)
Phần sau bn tụ áp dụng
Bất cứ đa thức nào có dạng: \(f\left(x\right)=x^3\left(ax^2+bx+c\right)\) đều thỏa mãn đề bài
1.Ta có (x-y)^2 >=0
(x-y)(x-y) >=0
x^2+y^2-2xy>=0
(x^2+y^2+2xy)-4xy>=0
(x+y)^2 >=4xy mà x+y=1
4xy <=1
xy<=1/4
dấu = xảy ra <=> (x-y)^2=0
<=>x-y=0 <=> x=y mà x+y=1
<=> x=y=0,5
GTLn của bt là 1/4 tại x=y=0,5
2. (* chú ý nè : Tổng các hệ số của 1 đa thức sau khi bỏ dấu ngoặc là giá trị của đa thức đó tại biến =0)
Bài này bạn chỉ cần thay x=1 vào rồi tính thui
Đáp số là: 8^2019
3.f(-2)=4a-2b+c
f(3)=9a+3b+c
=> f(-2)+f(3) =13a+b+2c=0
=> f(-2)=-f(3)
=> f(-2). f(3)= -f(3) .f(3)=-[f(3)]^2
Mà -[f(3)]^2<=0 với mọi a,b,c
=> f(-2). f(3)<=0
T i ck cho mình ủng hộ nha