Cho tam giác ABC nhọn, H là trực tâm. D là trung điểm của BC. Đường thẳng qua H vuông góc với HD cắt AB tại M. Chứng minh rằng : 𝐻𝐴𝐷 = 𝐻𝐶𝑀
mn giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔEHB vuông tại E và ΔDHC vuông tại D có
\(\widehat{EHB}=\widehat{DHC}\)(hai góc đối đỉnh)
Do đó: ΔEHB∼ΔDHC(g-g)
Suy ra: \(\dfrac{HE}{HD}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)
Xét ΔHED và ΔHBC có
\(\dfrac{HE}{HB}=\dfrac{HD}{HC}\)(cmt)
\(\widehat{EHD}=\widehat{BHC}\)(hai góc đối đỉnh)
Do đó: ΔHED∼ΔHBC(c-g-c)
b) Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{EAC}\) chung
Do đó: ΔADB∼ΔAEC(g-g)
Suy ra: \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)
\(\widehat{EAD}\) chung
Do đó: ΔADE∼ΔABC(c-g-c)
a: Xét ΔABC có
BE là đường cao
CF là đường cao
BE cắt CF tại H
Do đó: H là trực tâm của ΔABC
Xét tam giác CIE và tam giác BID có: IE=ID; IC=IB và ^CIE=^BID (Đối đỉnh)
=> Tam giác CIE = Tam giác BID (c.g.c)
^ICE=^IBD (2 góc tương ứng). Mà ^ICE và ^IBD so le trong
=> CE//BD hay BD//CH. Mà BD vuông góc với AB
=> CH vuông góc với AB (Quan hệ //, vg góc)
=> Tam giác AHC vuông tại H (đpcm).
a) ta có tam giác abc cân tại A suy ra B=C3
C3=C1(2 góc đđ) suy ra B=C1
xét 2 tam giác vuông MBD và NCE
B=C1(cmt)
BD=CE(gt)
D1=E=90 độ
suy ra tam giácMBD=NCE(g.c.g)
suy ra MD=NE
E tham khảo BTVN của thầy Hoàng Anh Tài nhé!