K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔIDC vuông tại I và ΔKDB vuông tại K có

góc IDC chung

=>ΔIDC đồng dạng với ΔKDB

b: Xét ΔBHA vuông tại H và ΔBKC vuông tại K co

góc BAH=góc BCK

=>ΔBHA đồng dạng với ΔBKC

=>BH/BK=BA/BC

=>BK*BA=BH*BC

19 tháng 6 2018

a) \(BE;DF\perp AC\text{ nên }BE//DF\)

\(\Delta BEO=\Delta DFO\) (cạnh huyền - góc nhọn)

=> BE = FD

\(\Rightarrow\Delta BEDF\text{ là }HBH\)

b) \(\Delta BHC~\Delta DKC\) (g.g)

\(\widehat{H}=\widehat{G}=90^o\) 

\(\widehat{CBH}=\widehat{CDK}\) (vì 2 góc này kề bù vs 2 góc bằng nhau là \(\widehat{CBA}=\widehat{ADC}\)

\(\Rightarrow\frac{BC}{DC}=\frac{HC}{KC}\)

\(\Rightarrow CB.CK=CH.CD\)

c) Ta có: \(\Delta ABE~\Delta ACH\)

\(\Rightarrow\frac{AB}{AC}=\frac{AE}{AH}\)

\(\Rightarrow AB.AH=AE.AC\)

\(\Leftrightarrow AD.AK=AF.AC\)

\(\Rightarrow AB.AH+AD.AK=AC.\left(AF+AE\right)=AC.2AO=AC^2\)

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với ACBài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEMBìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc...
Đọc tiếp

Bai 1 : Cho hình bình hành ABCD ; góc BAD = 120 độ ; AB = 2 AD 
a) CMR: Tia phân giác của góc ADC đi qua trung điểm E của AB .
b) Gọi F là trung điểm DC . CMR tam giác ADF đều và AD vuông góc với AC

Bài 2: Cho hình bình hành ABCD có BC = 2AB . Gọi M là trung điểm AD. Kẻ CE vuông góc với AB ; E nằm giữa A và B . CMR:              góc EMD = 3 góc AEM

Bìa 3: Cho tam giác ABC vuông tại A . Đường cao AH . Từ H kẻ HE , HF vuông góc với AB và AC . Kẻ AI vuông góc với EF ( I \(\in\)BC). CMR: a) I là trung điểm BC 
          b) Cho tam giác ABC vuông tại A. Đường cao AH. Gọi E, F lần lượt là các hình chiếu của H xuống AB, AC. Gọi I là trung điểm của BC. CMR: AI vuông góc với EF.

Bài 4: Cho tam giác ABC cân tại A . D bất kì thuộc BC . Qua D kẻ đường thẳng vuông góc với BC cắt AB và AC lần lượt tại E,F . Gọi I,K lần lượt là trung điểm của BE và CF .
a) CMR: AKDI là hình bình hành 
b) Nêu thêm điều kiện của tam giác ABC và của điểm D để DIAK là hình vuông

0
21 tháng 10 2021

a, Xét tg AHD và tg CIB có \(AD=BC;\widehat{AHD}=\widehat{CIB}=90^0;\widehat{ADH}=\widehat{CBI}\left(so.le.trong\right)\) nên \(\Delta AHD=\Delta CIB\left(ch-gn\right)\)

Do đó \(AH=CI\)

Mà AH//CI (⊥BD) nên AHCI là hbh

b, Vì AHCI là hbh mà M là trung điểm HI nên cũng là trung điểm AC

Do đó A đối xứng C qua M

22 tháng 11 2016

A B C D N M

a) Ta có : 

AB // CD ( Vì ABCD là hcn ) 

mà N \(\in\) AB 

     M \(\in\) DC 

=) AN // MD 

Xét hcn ABCD có : 

M là tđ của cạnh DC 

NA // MD  

=) N là tđ của AB 

=) NA = NB 

mà AM = MC 

lại có : AB = DC ( vì ABCD là hcn ) 

=) AN = DM 

mà AN // DM 

=) ANMD là hbh 

mà góc M = 90o 

=) ANMD là hcn

b) 

Ta có : AN = MC ( Vì cx = MD ) 

mà AN // DC 

=) ANCM là hbh 

câu c) chút nữa mình làm  bn vẽ hình trước 

10 tháng 6 2020

A B C D H K M N

CM: a) Xét t/giác AHD và t/giác CKB

có: AD = BC (Vì ABCD là HBH)

 \(\widehat{AHD}=\widehat{CKB}=90^0\)(gt)

 \(\widehat{ADH}=\widehat{KBC}\)(slt của AD // BC)

=? t/giác AHD = t/giác CKB (ch - gn)

=> AH = CK (2 cạnh t/ứng)

b) Xét tứ giác AHCK có AH // CK (Vì cùng vuông góc với BD)

  AH = CK (cmt)

=> AHCK là HBH

c) Xét t/giác ADH và t/giác BDM

có: \(\widehat{MDB}\):chung

 \(\widehat{AHD}=\widehat{M}=90^0\) (gt)

=> t/giác ADH đồng dạng t/giác BDM (g.g)

=> \(\frac{AD}{BD}=\frac{DH}{DM}\) => AD.DM = BD.DH (1)

Xét t/giác DCK và t/giác DBN

có \(\widehat{BDN}\):chung

 \(\widehat{DKC}=\widehat{N}=90^0\)(gt)

=> t/giác DCK đồng dạng t/giác DBN

=> \(\frac{DC}{DB}=\frac{DK}{DN}\)=> DC. DN = DB.DK (2)

Từ (1) và (2) công vế theo vế, ta được:

DA.DM + DC.DN = BD. DH + DB.DK = BD(DH + DK)

vì DH = BK (vì t/giác ADH = t/giác CBK)

=> DA.DM + DC.DN = BD. (BK + DK) = BD2