tính tổng
S = 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2.3+1/3.4+1/4.5+...+1/99.100
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
1/2*3+1/3*4+...+1/99*100
=1/2-1/3+1/3-1/4+...+1/99-1/100
=50/100-1/100=49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\left(1+\frac{1}{2.3}\right)\left(1+\frac{1}{3.4}\right)\left(1+\frac{1}{4.5}\right)...\left(1+\frac{1}{99.100}\right)\)
\(=\left(1+\frac{1}{2}-\frac{1}{3}\right)\left(1+\frac{1}{3}-\frac{1}{4}\right)\left(1+\frac{1}{4}-\frac{1}{5}\right)...\left(1+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-\frac{1}{3}.1+\frac{1}{3}-\frac{1}{4}.1+\frac{1}{4}-\frac{1}{5}...1+\frac{1}{99}-\frac{1}{100}\)
\(=1+\frac{1}{2}-1.\left(\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1.\left(2\frac{1}{3}-2\frac{1}{4}-...-2\frac{1}{99}-\frac{1}{100}\right)\)
\(=1+\frac{1}{2}-1\left[2.\left(\frac{1}{3}-\frac{1}{4}-\frac{1}{5}-...-\frac{1}{99}\right)\right]-\frac{1}{100}\)
tới đây bí
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}=\dfrac{99}{100}\)
Ta có: 1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
= 1/2-1/100
= 50/100-1/100
= 49/100
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
\(=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+....+\left(\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{2}+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{50}{100}-\frac{1}{100}\)
\(=\frac{49}{100}\)
bạn tách ra, 1/1.2=1-1/2 cứ như thế, rồi trừ đi còn 1-1/100=99/100
Bài 1 :
Đặt A=1.2+2.3+3.4+4.5+.........+99.100
=> 3A=1.2.3+2.3.(4-1)+........+99.100.(101-98)
3A=1.2.3+2.3.4-1.2.3+........+99.100.101-98.99.100
3A=99.100.101
A=33.100.101
A=333300
Bài 2 :
1:20 + 1:44 + 1:77 + 1:119 + 1:170 = \(\frac{1}{20}+\frac{1}{44}+\frac{1}{77}+\frac{1}{119}+\frac{1}{170}=\frac{1}{10}=0,1\)
1)1.2+2.3+3.4+4.5+...+99.100
đặt 3D=1.2+2.3+3.4+...+99.100
=1.2.3+2.8.3+...+3.4.3+4.5.3+...+99.100.3
=1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5
=99.100.101
=999900
D=999900:3=333300
nếu đúng nhớ cảm ơn nhak. mình ko bít làm bài 2
\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
chúc các bạn học tốt
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=1\times\frac{49}{100}\)
\(S=\frac{49}{100}\)