tính nhanh:
C=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+........+\frac{1}{2499}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C=1/15+1/35+1/63+..+1/2499
=1/3.5+1/5.7+1/7.9+...+1/49.51
=1/2(2/3.5+2/5.7+2/7.9+...+2/49.51)
=1/2(1/3-1/5+1/5-1/7+1/7-1/9+...+1/49-1/51)
= 1/2.(1/3-1/51)
=1/2.16/51
=8/51
Đặt \(A=1\frac{7}{15}-\frac{1}{3}-\frac{1}{15}-\frac{1}{35}-\frac{1}{63}-\frac{1}{99}-\frac{1}{143}-\frac{1}{195}\)
\(\Rightarrow A=\frac{22}{15}-\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\right)\)
Đặt \(B=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\)
\(\Rightarrow B=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\)
\(\Rightarrow2B=2\left(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}+\frac{1}{13\cdot15}\right)\)
\(\Rightarrow2B=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(\Rightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(\Rightarrow2B=1-\frac{1}{15}\)
\(\Rightarrow2B=\frac{14}{15}\)
\(\Rightarrow B=\frac{14}{15}:2\Rightarrow B=\frac{7}{15}\)
\(\Rightarrow A=\frac{22}{15}-\frac{7}{15}\Rightarrow A=\frac{15}{15}=1\)
\(S=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{13.15}\)
\(\Rightarrow S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(\Rightarrow S=\frac{1}{2}.\left(1-\frac{1}{15}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{14}{15}\)
\(\Rightarrow S=\frac{7}{15}\)
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+....+\frac{1}{195}\)
\(=\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}+...+\frac{1}{13x15}\)
\(=\frac{1}{2}x\left(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+\frac{2}{7x9}+...+\frac{2}{13x15}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}x\left(1-\frac{1}{15}\right)=\frac{1}{2}x\frac{14}{15}=\frac{7}{15}\)
1/3 + 1/15 + 1/35+ 1/63 +...... + 1/195
= 1/3 + 1/3x5 + 1/5 x7 + 1/7x9 + ....+1/13x15
= 1/3+1/3-1/5+1/5-1/7+1/7-1/9+....+1/13-1/15 ( vì +- nên rút gọn )
= 1/3+1/3-1/15
=3/5
=1/1.3+1/3.5+1/5.7+...+1/13.15
=1/2.2(1/1.3+1/3.5+1/5.7+...+1/13.15)
=1/2(2/1.3+2/3.5+2/5.7+...+2/13.15)
=1/2(1-1/3+1/3-1/5+1/5-1/7+...+1/13-1/15)
=1/2[(1-1/15)+(1/3-1/3)+(1/5-1/5)+...+(1/13-1/15)]
=1/2[(1-1/15)+0+...+0=1/2(1-1/15)=1/2.14/15=14/30=7/15
A=1/3.5+1/5.7+1/7.9+...+1/99.101
2A= 2/3.5+2/5.7+2/7.9+...+2/99.101
2A= 1/3-1/5+1/5-1/7-1/7+1/7-1/9+...+1/99-1/101
2A=1/3-1/101=98/303
A=(98/303)/2=49/303
\(A=1/3.5+1/5.7+1/7.9+…+1/99.101\)
A.2=2/3.5+2/5.7+2/7.9+…+2/99.101
A.2=1/3-1/5+1/5-1/7+1/7-1/9+...+1/99-1/101
Vậy
A.2=1/3-1/101=98/303
A=98/303/2=49/303
Đúng không
A = 1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999
= 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 + ... + 1/99x101
A x 2 = 2/3x5 + 2/5x7 + 2/7x9 + 2/9x11 + ... + 2/99x101
= 1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + 1/9 - 1/11 + ... + 1/99 - 1/101
= 1/3 - 1/101 = 98/303
Vậy A = 98/303 : 2 = 49/303
Ta có :
\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{2499}\)
\(=\)\(\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{2499}\right)\) ( bước này hơi khó hiểu tí nhé )
\(=\)\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\) ( phân tích mẫu )
\(=\)\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\) ( áp dụng công thức thoi )
\(=\)\(\frac{1}{2}\left(1-\frac{1}{51}\right)\) ( loại bỏ nhưng phân số đối nhau )
\(=\)\(\frac{1}{2}.\frac{50}{51}\)
\(=\)\(\frac{25}{51}\)
Chúc bạn học tốt ~
ĐẶT \(A\)\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)
\(2.A=\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{49\cdot51}\)
\(2.A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
\(2.A=1-\frac{1}{51}\)
\(2.A=\frac{50}{51}\)
\(\Rightarrow A=\frac{50}{51}\div2=\frac{25}{51}\)
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(A=\frac{1}{2}\left(\frac{2}{3.5}+...+\frac{2}{11.13}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(A=\frac{1}{2}\cdot\frac{10}{39}=\frac{5}{39}\)
P/s: Có thể tính sai :<
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}\)
\(=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+\frac{1}{9\cdot11}+\frac{1}{11\cdot13}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(C=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+.....+\frac{1}{49.51}\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{8}{51}\)