cho tam giác ABC vuông tại A(AC>AB), đường cao AH(H thuộc BC). Tia phân giác trong goc HAC cắt HC tại M, gọi N là trung điểm AC. a)Cm tam giác AHB đồng dạng với CHA rồi suy ra MH/MC=HB/AB b)MN cắt AH tại E và cắt AB tại F, Cm AM//BE. Kẻ MG vuông góc với AB. Cm 2/FG=1/FA + 1/FB
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
Vì sao góc ABE=góc CMA thì bạn lại ko nói. Giải kiểu thầy cô tự hiểu.