K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

\(x^3y^4+2x^3y^4+3x^3y^4+....+nx^3y^4=820x^3y^4\)

\(\Leftrightarrow x^3y^4\left(1+2+3+....+n\right)=820x^3y^4\)

\(\Leftrightarrow1+2+3+....+n=820\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)

\(\Leftrightarrow n\left(n+1\right)=1640=40.41\)

\(\Rightarrow n=40\)

12 tháng 3 2017

\(x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4=820x^3y\)

\(\Leftrightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)

\(\Leftrightarrow1+2+3+...+n=820\)

\(\Leftrightarrow\frac{n\left(n+1\right)}{2}=820\)

\(\Leftrightarrow n\left(n+1\right)=1640=40,61\)

\(n=40\)

12 tháng 3 2017

Đặt \(A=x^3y^4+2x^3y^4+3x^3y^4+...+nx^3y^4\)

\(A=x^3y^4\left(1+2+3+...+n\right)\)

Lại có:\(A=820x^3y^4\)

\(\Rightarrow x^3y^4\left(1+2+3+...+n\right)=820x^3y^4\)

\(\Rightarrow1+2+3+...+n=820\)

\(\Rightarrow\dfrac{\left(n+1\right)n}{2}=820\)

\(\Rightarrow\left(n+1\right)n=1640\)

\(\Rightarrow\left(n+1\right)n=41\cdot40\)(vì \(n\in N\) nên ta không xét trường hợp âm)

\(\Rightarrow n=40\)

Vậy n=40

18 tháng 8 2016

bài này đặt ẩn đi nhìn hệ to quá cx ngại

18 tháng 8 2016

dung ham dac trung do'

3 tháng 6 2019

\(C=\frac{7}{9}x^3y^2\left(\frac{6}{11}axy^3\right)+\left(-5bx^2y^4\right)\left(\frac{-1}{2}axz\right)+ax\left(x^2y\right)^3\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax\left(x^6y^3\right)\)

\(\Rightarrow C=\frac{42}{9}ax^4y^5+\frac{5}{2}abx^3y^4z+ax^7y^3\)

\(D=\frac{\left(3x^4y^4\right)^2\left(\frac{6}{11}x^3y\right)\left(8x^{n-7}\right)\left(-2x^{7-n}\right)}{15x^3y^2\left(0,4ax^2y^2z^2\right)^2}\)

\(D=\frac{\left[3.\frac{6}{11}.8.\left(-2\right)\right]\left(x^8x^3x^{n-7}x^{7-n}\right)\left(y^8y\right)}{15.0,4.\left(x^3x^4\right)\left(y^2y^4\right)z^4a}\)

\(D=\frac{\frac{-188}{11}x^{24}y^9}{6x^7y^6z^4a}\)

a: =>A-B=3x^2y-4xy^2+x^2y-2xy^2=4x^2y-6xy^2

b: =>B-A=-7xy^2+8x^2y-5xy^2+6x^2y=-12xy^2+14x^2y

=>A-B=12xy^2-14x^2y

c: =>B-A=8x^2y^3-4x^3y-3x^2y^3+5x^3y^2=5x^2y^3+x^3y^2

=>A-B=-5x^2y^3-x^3y^2

d: =>A-B=2x^2y^3-7x^3y+6x^2y^3+3x^3y^2=8x^2y^3-7x^3y+3x^3y^2

1 tháng 6 2023

ĐK : \(x\ne0\)

Ta có \(x^4+2x^3y+x^2.y^2=7x+9\)

\(\Leftrightarrow x^2.\left(x+y\right)^2=7x+9\)

\(\Rightarrow x\left(x+y\right)=\sqrt{7x+9}\left(x\ge-\dfrac{9}{7}\right)\)(1)

Lại có \(x.\left(y-x+1\right)=3\Leftrightarrow x.\left(x+y\right)=2x^2-x+3\) (2) 

Thay (2) vào (1) ta được \(2x^2-x+3=\sqrt{7x+9}\)

\(\Leftrightarrow2x^2-x-1=\sqrt{7x+9}-4\)

\(\Leftrightarrow\left(x-1\right).\left(2x+1\right)=\dfrac{7.\left(x-1\right)}{\sqrt{7x+9}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\2x+1=\dfrac{7}{\sqrt{7x+9}+4}\end{matrix}\right.\)

Với \(2x+1=\dfrac{7}{\sqrt{7x+9}+4}\) (*)

\(\Leftrightarrow2x=\dfrac{3-\sqrt{7x+9}}{\sqrt{7x+9}+4}\)

\(\Leftrightarrow2x+\dfrac{7x}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(\text{loại}\right)\\2+\dfrac{7}{\left(\sqrt{7x+9}+4\right).\left(\sqrt{7x+9}+3\right)}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (3) vô nghiệm nên phương trình (*) vô nghiệm

Với x = 1 => y = 3 

Tập nghiệm (x;y) = (1;3)

19 tháng 12 2021

\(a,=\dfrac{x^2+4x+3-2x^2+2x+x^2-4x+3}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ b,=\dfrac{1-2x+3+2y+2x-4}{6x^3y}=\dfrac{2y}{6x^3y}=\dfrac{1}{x^2}\\ c,=\dfrac{75y^2+18xy+10x^2}{30x^2y^3}\\ d,=\dfrac{5x+8-x}{4x\left(x+2\right)}=\dfrac{4\left(x+2\right)}{4x\left(x+2\right)}=\dfrac{1}{x}\\ c,=\dfrac{x^2+2+2x-2-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{1}{x^2+x+1}\)

3 tháng 4 2017

x=4

y=2

n=6

=>N= 426