Cho ABC là một tam giác cân (AB = AC) và diện tích của nó là 501cm2. BD là đường phân giác bên trong của góc ABC (D ∈ AC), E là một điểm trên tia đối của CA sao cho CE = CB. I là một điểm trên BC sao cho CI = 1/2 BI. Đường EI cắt AB tại K, BD cắt KC tại H. Tìm diện tích tam giác AHC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Giải:
a) Vì \(\Delta ABC\) có AB = AC nên \(\Delta ABC\) cân tại A
\(\Rightarrow\widehat{B_2}=\widehat{C_1}\)
\(\Rightarrow180^o-\widehat{B_2}=180^o-\widehat{C_1}\)
hay \(\widehat{DBE}-\widehat{B_2}=\widehat{ECD}-\widehat{C_1}\)
\(\Rightarrow\widehat{B_1}=\widehat{C_2}\) (*)
Xét \(\Delta ABD,\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{B_1}=\widehat{C_2}\) ( theo (*) )
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow AD=AE\) ( cạnh t/ứng ) (đpcm)
b) Ta có: \(BM=MC\left(=\frac{1}{2}BC\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow BM+BD=MC+CE\)
\(\Rightarrow MD=ME\) (**)
Xét \(\Delta DAM,\Delta MAE\) có:
\(AD=AE\) ( theo phần a )
\(MD=ME\) ( theo (**) )
\(AM\): cạnh chung
\(\Rightarrow\Delta DAM=\Delta MAE\left(c-c-c\right)\)
\(\Rightarrow\widehat{DAM}=\widehat{MAE}\) ( góc t/ứng )
\(\Rightarrow AM\) là tia phân giác của \(\widehat{DAE}\left(đpcm\right)\)
Vậy...
Ta có hình vẽ
a/ Ta có: \(\widehat{ABC}\)=\(\widehat{ACB}\) (vì \(\Delta\)ABC cân) (*)
Mà \(\widehat{ABC}\)+\(\widehat{ABD}\)=1800 (kề bù) (**)
và \(\widehat{ACB}\)+\(\widehat{ACE}\)=1800 (kề bù) (***)
Từ (*),(**),(***) => \(\widehat{ABD}\) = \(\widehat{ACE}\) (1)
Ta có: AB = AC (GT) (2)
BD = CE (GT) (3)
Từ (1),(2),(3) => tam giác ABD = tam giác ACE
=> AD = AE (2 cạnh tương ứng) (đpcm)
b/ Xét tam giác AMD và tam giác AME có:
AD = AE (đã chứng minh ở câu a)
AM: cạnh chung
\(\begin{cases}BM=MC\\BD=CE\end{cases}\)\(\Rightarrow\) MB+BD=MC+CE \(\Rightarrow\)MD = ME
=> tam giác AMD = tam giác AME (c.c.c)
=> \(\widehat{DAM}\)=\(\widehat{EAM}\) (2 góc tương ứng)
=> AM là phân giác góc DAE (đpcm)
Xin lỗi bạn , mình mới học lớp 5 thôi nên cũng không biết gì ...
~~~ Chúc bạn học giỏi ~~~
Mình cũng mới lớp 5 thôi.
Mong bạn làm được !