K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2022

-Áp dụng BĐT AM-GM ta có:

\(xy\le\dfrac{\left(x+y\right)^2}{4}\Leftrightarrow xy\le\dfrac{2^2}{4}=1\)

\(x^2+y^2\ge\dfrac{\left(x+y\right)^2}{2}=\dfrac{2^2}{2}=2\)

\(A=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2+2001=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}+2001=4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+2009\ge4.2+2.\dfrac{1}{xy}+2009\ge8+2.\dfrac{1}{1}+2009=2019\)

\(A=2019\Leftrightarrow x=y=1\)

-Vậy \(A_{min}=2019\)

 

6 tháng 5 2022

-Do bài này có đk của x nên giải quyết cũng hơi mệt.

23 tháng 1 2018

ai giúp vs

28 tháng 12 2019

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

27 tháng 5 2021

Ta có \(x,y\le1\) nên \(1\le\sqrt{1+2x}\le\sqrt{3}\).

Suy ra \(\left(\sqrt{1+2x}-1\right)\left(\sqrt{1+2x}-\sqrt{3}\right)\le0\Rightarrow\left(\sqrt{3}+1\right)\sqrt{1+2x}\ge1+2x+\sqrt{3}\).

Tương tự \(\left(\sqrt{3}+1\right)\sqrt{1+2y}\ge1+2y+\sqrt{3}\).

Suy ra \(\left(\sqrt{3}+1\right)P\ge2+2\sqrt{3}+2\left(x+y\right)\).

Mà \(\left(x+y\right)^2\ge x^2+y^2=1\Rightarrow x+y\le1\Rightarrow\left(\sqrt{3}+1\right)P\ge2+2\sqrt{3}+2=4+2\sqrt{3}\Rightarrow P\ge\sqrt{3}+1\).

Dấu "=" xảy ra khi x = 0; y = 1 hoặc x = 1; y = 0.

27 tháng 5 2021

undefined

CHÚC BẠN HỌC TỐT NHAyeu

4 tháng 4 2022

bn có giải đc ko?

4 tháng 4 2022

d. Áp dụng BĐT Caushy Schwartz ta có:

\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)

-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

10 tháng 5 2019

Chứng minh BĐT phụ:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Giờ thì chứng minh thôi:3

Áp dụng BĐT Cauchy-schwarz dạng engel ta có:

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(2x+2y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}\)

\(=8\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

Vậy \(P_{min}=8\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 5 2019

Bài này bạn làm đúng rồi nhưng mà bạn bị nhầm phép tính: \(\frac{\left[2\left(x+y\right)+\frac{4}{1}\right]^2}{2}=18\)

=> Min P=18