Cho tam giác MNP vuông tại M. MH là đường cao. Kẻ HK vuông góc với MN tại K. HQ vuông góc với MP tại Q. Chứng Minh
MH^2=NH x HP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHN vuông tại H có HD là đường cao ứng với cạnh huyền MN, ta được:
\(MD\cdot MN=MH^2\left(1\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔMHP vuông tại H có HE là đường cao ứng với cạnh huyền MP, ta được:
\(ME\cdot MP=MH^2\left(2\right)\)
Từ (1) và (2) suy ra \(MD\cdot MN=ME\cdot MP\)
a) Xét ΔMNH vuông tại M và ΔKNH vuông tại K có
NH chung
\(\widehat{MNH}=\widehat{KNH}\)(NH là tia phân giác của \(\widehat{MNK}\))
Do đó: ΔMNH=ΔKNH(cạnh huyền-góc nhọn)
b) Ta có: ΔMNH=ΔKNH(cmt)
nên MH=KH(hai cạnh tương ứng)
Xét ΔMHE vuông tại M và ΔKHP vuông tại K có
HM=HK(cmt)
\(\widehat{MHE}=\widehat{KHP}\)(hai góc đối đỉnh)
Do đó: ΔMHE=ΔKHP(cạnh góc vuông-góc nhọn kề)
Suy ra: HE=HP(Hai cạnh tương ứng)
a: Xét ΔMHL vuông tại L và ΔMKL vuông tại L có
ML chung
HL=KL
Do đó: ΔMHL=ΔMKL
b: Xét ΔMHN và ΔMKN có
MH=MK
\(\widehat{HMN}=\widehat{KMN}\)
MN chung
Do đó: ΔMHN=ΔMKN
Suy ra: \(\widehat{MHN}=\widehat{MKN}=90^0\)
so lo truy kich khong
xin lỗi bạn mình bận r