K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

ta có : (x^2+x+4)(1+8x) +16x^2=0

vì 16x^2>=0 suy ra *x^2+x+4=0

*1+8x=0

*16x^2=0

tự giải pt

27 tháng 6 2019

Vậy (6x3 – 7x2 – 16x + 12) : (2x + 3) = 3x2 – 8x + 4

9 tháng 4 2021

\(2ab=0\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)

Đã bảo bạn là đăng vào phần lớp 8 ấy. Sẽ có những người học cùng cấp giải cho bạn.

9 tháng 4 2021

2ab =0 <=> a= 0 hoặc b=0 

Chúc bạn học tốt!!

28 tháng 11 2021

\(\Leftrightarrow\left(b-2\sqrt{2}\right)\left(b+2\sqrt{2}\right)\ge0\\ \Leftrightarrow\left[{}\begin{matrix}b\ge2\sqrt{2}\\b\le-2\sqrt{2}\end{matrix}\right.\)

a) Thay m=2 vào phương trình \(x^2+2\left(m-1\right)x-4m=0\), ta được:

\(x^2+2\cdot\left(2-1\right)x-4\cdot2=0\)

\(\Leftrightarrow x^2+2x-8=0\)(1)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot\left(-8\right)=4+32=36\)

Vì \(\Delta>0\) nên phương trình (1) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-b-\sqrt{\Delta}}{2a}\\x_2=\dfrac{-b+\sqrt{\Delta}}{2a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2-\sqrt{36}}{2\cdot1}=\dfrac{-2-6}{2}=-4\\x_2=\dfrac{-2+\sqrt{36}}{2\cdot1}=\dfrac{-2+6}{2}=2\end{matrix}\right.\)

Vậy: Khi m=2 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt là \(x_1=-4;x_2=2\)

b) Ta có: \(x^2+2\left(m-1\right)x-4m=0\)

\(\Delta=\left[2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-4\right)\)

\(\Leftrightarrow\Delta=\left(2m-2\right)^2+16>0\forall m\)

\(\forall m\) thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) luôn có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-\left(2m-2\right)-\sqrt{\Delta}}{2}\\x_2=\dfrac{-\left(2m-2\right)+\sqrt{\Delta}}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}\\x_2=\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}\end{matrix}\right.\)

Để x1 và x2 là hai số đối nhau thì \(x_1+x_2=0\)

\(\Leftrightarrow\dfrac{-2m+2-\sqrt{\left(2m-2\right)^2+16}}{2}+\dfrac{-2m+2+\sqrt{\left(2m-2\right)^2+16}}{2}=0\)

\(\Leftrightarrow-2m+2-2m+2=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow-4m=-4\)

hay m=1

Vậy: Khi m=1 thì phương trình \(x^2+2\left(m-1\right)x-4m=0\) có hai nghiệm phân biệt x1 và x2 thỏa mãn x1 và x2 là hai số đối nhau

31 tháng 1 2021

a, Với m = 2 (1)<=>x^2+2x-8=0 rồi tính ra thôi

b, Để PT có 2 nghiệm PB thì 

Δ=[2(m−1)]^2−4⋅1⋅(−4)Δ=[2(m−1)]2−4⋅1⋅(−4)

⇔Δ=(2m−2)^2+16>0∀m

Vì x1 và x2 là 2 số đối nhau nên x1+x2=0 <=> -2(m-1) = 0 <=> m=1

Vậy để PT có 2 nghiệm pbiet đối nhau thì m = 1 

AH
Akai Haruma
Giáo viên
1 tháng 10 2021

Lời giải:
$\cos 2x+\cos x+1=0$

$\Leftrightarrow 2\cos ^2x-1+\cos x+1=0$

$\Leftrightarrow 2\cos ^2x+\cos x=0$

$\Leftrightarrow \cos x(2\cos x+1)=0$

$\Leftrightarrow \cos x=0$ hoặc $\cos x=-\frac{1}{2}$

Nếu $\cos x=0$

$\Rightarrow x=\frac{\pi}{2}+k\pi$ với $k$ nguyên.

Nếu $\cos x=-\frac{1}{2}$

$\Leftrightarrow x=\frac{2}{3}\pi +2k\pi$ hoặc $x=-\frac{2}{3}\pi +2k\pi$ với $k$ nguyên bất kỳ.

26 tháng 2 2019

a)thay k=0, ta có

\(4x^2-25+0^2+4.0.x=0\)

\(\Leftrightarrow4x^2-25+0+0=0\)

\(\Leftrightarrow4x^2-25=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\x=-\frac{5}{2}\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{\frac{5}{2};-\frac{5}{2}\right\}\)

b) Thay k=-3, ta có:

\(4x^2-25+\left(-3\right)^2+4\left(-3\right)x=0\)

\(\Leftrightarrow4x^2-25+9-12x=0\)

\(\Leftrightarrow4x^2-16-12x=0\)

\(\Leftrightarrow4x^2-16+4x-16x=0\)

\(\Leftrightarrow\left(4x^2+4x\right)-\left(16x+16\right)=0\)

\(\Leftrightarrow4x\left(x+1\right)-16\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-16\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x+1=0\\4x-16=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=4\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;4\right\}\)

c) Thay x=-2, ta có:

\(4\left(-2\right)^2-25+k^2+4\left(-2\right)k=0\)

\(\Leftrightarrow16-25+k^2-8k=0\)

\(\Leftrightarrow-9+k^2-8k=0\)

\(\Leftrightarrow-9+k^2+k-9k=0\)

\(\Leftrightarrow\left(k^2+k\right)-\left(9k+9\right)=0\)

\(\Leftrightarrow k\left(k+1\right)-9\left(k+1\right)=0\)

\(\Leftrightarrow\left(k+1\right)\left(k-9\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}k+1=0\\k-9=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}k=-1\\k=9\end{cases}}\)

Vậy tập nghiệm của PT là \(S=\left\{-1;9\right\}\)