1/2+1/4+1/8+1/16+.........+1/2048=...........
làm đúng mình tick cho nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/2048
2A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024
2A - A = 1 + 1/2 + 1/4 + 1/8 + ... + 1/1024 - 1/2 - 1/4 - 1/8 - 1/16 - ... . 1/2048
A = 1 - 1/ 2048
A = 2047 / 2048
Vậy 1/2+ 1/4 + 1/8 + 1/16 + ... + 1/2048 = 2047/2048
\(\text{Đặt }S=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}.\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(\Rightarrow2S-S=S=\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\right)\)
\(\Rightarrow S=1-\frac{1}{2048}=\frac{2047}{2048}\)
gọi biểu thức là A
A=1/2+1/4+1/8+...+1/2048=1/2+1/2^2+1/2^3+...+1/2^10
=>2A=1+1/2+1/2^2+...+1/2^9
=>A=2A-A(bạn đặt cột dọc ra rồi sẽ thấy:1/2-1/2=0;1/2^2-1/2^2=0;...)Ta được kết quả bằng 1+1/2^10
Đặt A =1/2 + 1/4 + 1/8 + ...+ 1/1024 + 1/2048
A= 1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11
2A= 1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10
2A-A= (1 +1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10) - (1/2 + 1/2^2 + 1/2^3+...+ 1/2^10 + 1/2^11)
A= 1+1/2 + 1/2^2 +...+ 1/2^9 + 1/2^10 - 1/2 - 1/2^2 - 1/2^3 - ...- 1/2^10 - 1/2^11
A= 1- 1/2^11
A= 2047/ 2048
Đặt A = 2 + 4 + 8 + ... + 2048
= 2 + 22 + 23 + ... + 211
=> 2A = 22 + 23 + 24 + ... + 212
Lấy 2A trừ A theo vế ta có
2A - A = (22 + 23 + 24 + ... + 212) - (2 + 22 + 23 + ... + 211)
=> A = 212 - 2
Đặt \(A=2+4+8+16+...+1024+2048\)
\(\Rightarrow2A=4+8+16+32+...+2048+4096\)
\(\Rightarrow2A-A=4096-2\)
\(\Rightarrow A=4094\)
1/ 2 + 2 = 4
2/ 4 + 4 = 8
3/ 8 + 8 = 16
4/ 16 + 16 = 32
5/ 32 + 32 =64
6/ 64 + 64 =128
7/ 128 + 128 =256
8/ 256 + 256 =512
9/ 521 + 512 =1033
10/ 2048 + 2048 =4096
Đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{1024}+\frac{1}{2048}+\frac{1}{4096}\)
\(\Leftrightarrow A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\)
Nhân 2 vào 2 vế của biểu thức A , ta được :
\(2A=2\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow2A=1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^9}+\frac{1}{2^{10}}+\frac{1}{2^{11}}\)
Lấy biểu thức 2A - A , Ta được :
\(2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+....+\frac{1}{2^{10}}+\frac{1}{2^{11}}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}+\frac{1}{2^{12}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{12}}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{200}+\frac{1}{200}-\frac{1}{400}\)
\(A=1-\frac{1}{400}\)
\(A=\frac{399}{400}\)
2047/2048 nha k mình đi mình trả lời đầu tiên đó
1-1/2048=2047/2048