cho ΔABC có AB / AC tia phân giác AD chứng minh
a ADB<ADC
b trên AC lấy điểm E sao cho AE=AB gọi E là giao điểm của ED và AB chứng minh DE=DC
c so sánh BD và DC [mn giupa em với ạ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: AB<AC
=>góc B>góc C
góc ADB=góc C+góc CAD
góc ADC=góc B+góc BAD
mà góc C<góc B và góc CAD=góc BAD
nên góc ADB<góc ADC
b: Sửa đề; AE=AB
Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>góc ABD=góc AED
a: Xét ΔADB và ΔADM có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔADB=ΔADM
b: Ta có: ΔADB=ΔADM
nên DB=DM
mà AB=AM
nên AD là đường trung trực của BM
c: Xét ΔBDN và ΔMDC có
\(\widehat{BDN}=\widehat{MDC}\)
DB=DM
\(\widehat{DBN}=\widehat{DMC}\)
Do đó: ΔBDN=ΔMDC
Suy ra: BN=MC
Ta có: AB+BN=AN
AM+MC=AC
mà AB=AM
và BN=MC
nên AN=AC
hay ΔANC cân tại A
a:AB<AC
=>góc C<góc B
=>góc C+góc CAD<góc B+góc BAD
=>góc ADB<góc ADC
b: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
=>BD=ED
c: Xét ΔABC có AD là phân giác
nên DB/AB=DC/AC
mà AB<AC
nên BD<DC