câu : vật nặng có khối lượng 50kg được kéo lên cao theo phương thẳng đứng một đoạn 15m trong thời gian 125s bằng một động cơ .Cho biết vật chuyển động đều trong suốt quá trình di chuyển .Lấy g=10m/s² a) tính công suất cần thiết để thực hiện chuyển động trên b) trên thực tế , động cơ cung cấp công suất 80W . Tính hiệu suất của động cơ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\dfrac{v}{t}=\dfrac{2}{4}=0,5m/s^2\)
\(s=\dfrac{1}{2}at^2=\dfrac{1}{2}.0,5.4^2=4m\)
\(F-P=ma\Rightarrow F=P+ma=m\left(g+a\right)=800.\left(10+0,5\right)=8400N\)
\(P=\dfrac{Fs}{t}=\dfrac{8400.4}{4}=8400W\)
\(A=P.h=mgh=200.10.10=2.10^4\left(J\right)\)
\(\Rightarrow P=\dfrac{A}{t}=\dfrac{2.10^4}{25}=...\left(W\right)\)
Ta có công của động cơ lắc A = F . h
Vì máy bay chuyển động đi lên thẳng đều nên
F = P = m g = 5 . 103 . 10 = 5 . 104 ( N ) → A = F . h = 5 . 104 . 1440 = 72 . 106 ( J )
Chọn đáp án D
Đáp án B
Hướng dẫn:
Ta có thể quy bài toán con lắc lò xo trong thang máy chuyển động với gia tốc về trường hợp con lắc chịu tác dụng của trường lực ngoài F → = F q t → = − m a → .
Để đơn giản, ta có thể chia chuyển động của con lắc thành hai giai đoạn:
Giai đoạn 1: Thang máy chuyển động nhanh dần đều đi lên, con lắc dao động điều hòa quanh vị trí cân bằng mới O′.
Dưới tác dụng của lực quán tính ngược chiều với gia tốc, vị trí cân bằng mới O′ của con lắc nằm phía dưới vị trí cân bằng cũ O một đoạn O O ' = m a k = 0 , 4.4 100 = 1 , 6 cm.
+ Biến cố xảy ra không làm thay đổi tần số góc của dao động ω = k m = 100 0 , 4 = 5 π rad/s → T = 0,4 s.
Thời điểm thang máy bắt đầu chuyển động, vật ở biên trên, do vậy sau khoảng thời gian Δt = 12,5T = 5 s vật sẽ đến vị trí biên dưới, cách vị trí cân bằng cũ O một đoạn 2OO′ = 3,2 cm.
Giai đoạn 2: Thang máy chuyển động thẳng đều, con lắc dao động điều hòa quanh vị trí cân bằng O.
+ Thang máy chuyển động thẳng đều → a = 0, không còn lực quán tính nữa vị trí cân bằng bây giờ trở về O.
→ Con lắc sẽ dao đông với biên độ mới A′ = 2OO′ = 3,2 cm.
→ Thế năng đàn hồi của con lắc cực đại khi con lắc ở biên dưới, tại vị trí này lò xo giãn Δ l m a x = A ' + m g k = 3 , 2 + 0 , 4.10 100 = 7 , 2 cm.
+ Thế năng đàn hồi cực đại E d h m a x = 1 2 k Δ l m a x 2 = 1 2 .100 0 , 072 2 ≈ 0 , 26 J.
a, ta có P = \(\dfrac{A}{t}\) = \(\dfrac{mgh}{t}\) = \(\dfrac{15.10.50}{125}\) = 60
b,
ta có H = \(\dfrac{60}{80}\).100 = 75%