cho tam giác ABC có AB=3 cm, AC=4 cm, BC= 5cm
a) TAm giác ABC là tam giác gì
b) Vẽ BD là phân giác của góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. CM AD=DE
c)n CM AE vuông góc BD
d) kéo dài BA cắt ED tại F. CM AE//FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAM và ΔBEM có
BA=BE
\(\widehat{ABM}=\widehat{EBM}\)
BM chung
Do đó: ΔBAM=ΔBEM
Suy ra: MA=ME
a: Xét ΔABE và ΔADE có
AB=AD
\(\widehat{BAE}=\widehat{DAE}\)
AE chung
Do đó: ΔABE=ΔADE
Suy ra: BE=DE
b: Ta có: BE=DE
nên E nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AE là đường trung trực của BD
hay AE\(\perp\)BD
c: Xét ΔBEK và ΔDEC có
\(\widehat{KBE}=\widehat{CDE}\)
BE=DE
\(\widehat{BEK}=\widehat{DEC}\)
Do đó: ΔBEK=ΔDEC
d: Xét ΔAKC có
AB/BK=AD/DC
nên BD//KC
d) tam giác KBE = t/g CDE
=> KE = CE ( 2 cạnh tương ứng)
=> t/g KEC cân tại E
=> góc EKC = g ECK (3)
g BED= g KEC (4)
Từ (2),(3),(4) => gOBE=gODE=gBED=gKEC
=> BD//KC
a) Ta có: \(BC^2=13^2=169\)
\(AB^2+AC^2=5^2+12^2=169\)
Do đó: \(BC^2=AB^2+AC^2\)(=169)
Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b/ Xét 2 TG ABC và TG AEK,ta có:
A chung
E=B (2 TG = nhau câu a)
AB=AE (gt)
=>TG ABC=TG AEK (g-c-g)
=>AK=AC (cặp cạnh tương ứng)
Ta có :AK=AB+AC
AC=AE+EC
Mà AC=Ak
AB=AE
=>BK=EC
Xét 2 TG DBK và TG DEC,ta có:
BK=EC(cmt)
Góc BDK = góc EDC (đối đỉnh)
BD=ED(câu a)
=>TG DBK=TG DEC (c-g-c)
c/Vì AK=AC (TG AKE=TG ACB) nên TG AKC cân tại A
Cho tam giac ABC có AB < AC; AD là phân giác của goc A. Trên cạnh AC lấy điểm E sao cho AB = AE.
a. Chứng minh tam giac ABD = tam giac AED
b. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh tam giac FBD = tam giac CED và DF = DC
c. Chứng minh AD vuong goc voi CE d. Chứng minh BE // CF.
( giup minh voi cac ban oi )
a, Xét Δ ADB và Δ ADE có:
AD chung
góc BAD = góc EAD
AB = AE
⇛Δ ADB =Δ ADE(c-g-c)
a) Tam giác ABC có AB2+AC2=BC2( 32+42=52)
=> Tam giác ABC vuông tại A
b)Xét tam giác DBA và tam giác DBE có
AB=BE
DBA=DBE ( vì BD là phân giác của góc ABC)
Cạnh BD chung
=> \(\Delta DBA=\Delta DBE\left(c.g.c\right)\)
c) Gọi O là giao điểm của BD và AE
Có tam giác DBA=tam giác DBE ( theo câu b)
=> AD=DE
Ta có AB=BE và AD=DE hay BD là đường trung trực của AE
Vậy \(AE⊥BD\)
d) Xét tam giác DCE vuông và tam giác DFA vuông có
AD=DE
FDA=CDE ( 2 góc đối đỉnh)
=> tam giác DCE= tam giác DFA ( cạnh góc vuông- góc nhọn)
=> DF=DC
=> tam giác DCF cân tại D
Tam giác DEA có DA=DE => Nó cân tại D
Mà CDF=ADE( 2 góc đối đỉnh)
=> FCD+DFC=DAE+DEA
=>2.FCD=2.DAE
=> FCD=DAE
Mà FCD và DAE là 2 góc so le trong
=> AE//CF