Cho tam giác ABC vuông tại B (AB=AC) có AM là tia phân giác (M thuộc BC) trên cạnh AC lấy điểm N sao cho AB=AN a) CM tam giác ABM = tam giác ANM b) CM góc BAC=góc CMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABM và ΔANM có
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
b: góc BAC+góc C=90 độ
góc CMN+góc C=90 độ
=>góc BAC=góc CMN
a: Xét ΔABM và ΔANM có
AB=AN
\(\widehat{BAM}=\widehat{NAM}\)
AM chung
Do đó: ΔABM=ΔANM
b: Xét ΔBMI và ΔNMC có
\(\widehat{BMI}=\widehat{NMC}\)
MB=MN
\(\widehat{MBI}=\widehat{MNC}\)
Do đó; ΔBMI=ΔNMC
Suy ra: BI=NC
Ta có: AB+BI=AI
AN+NC=AC
mà AB=AN
và BI=NC
nên AI=AC
hay ΔAIC cân tại A
c: Xét ΔABC có AM là phân giác
nên BM/AB=CM/AC
mà AB<AC
nên BM<CM
a: Xét ΔAMB và ΔAMD có
AM chung
MB=MD
AB=AD
Do đó: ΔAMB=ΔAMD
b: Xét ΔABK và ΔADK có
AB=AD
\(\widehat{BAK}=\widehat{DAK}\)
AK chung
Do đó: ΔABK=ΔADK
c: Xét ΔKBE và ΔKDC có
KB=KD
\(\widehat{KBE}=\widehat{KDC}\)
BE=DC
Do đó: ΔKBE=ΔKDC
Suy ra: \(\widehat{BKE}=\widehat{DKC}\)
=>\(\widehat{BKE}+\widehat{BKD}=180^0\)
hay E,K,D thẳng hàng
xét ΔABM và ΔANM, ta có :
AB = AN (gt)
\(\widehat{MAB}=\widehat{MAN}\) (vì AM là tia phân giác của \(\widehat{A}\))
AM là cạnh chung
→ ΔABM = ΔANM (c.g.c)
a: Xét ΔABM và ΔANM co
AB=AN
góc BAM=góc NAM
AM chung
=>ΔABM=ΔANM
b: ΔABM=ΔANM
=>góc ABM=góc ANM=90 độ
=>góc NMC=90 độ-góc C=góc BAC