\(a.\dfrac{3}{5}\) x \(\dfrac{17}{21}\) \(+ \) \(\dfrac{17}{21}\) x \(\dfrac{2}{5}\)
\(b.(\dfrac{8}{5}+\dfrac{5}{6}):\dfrac{7}{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các bạn không cần trả lời câu hỏi trên của mik vì mik đã hiểu rồi nha . Cho nên đừng trả lời ! OK
a. \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)
<=> \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-6\cdot5\)
<=> \(25x+10-80x+10=24x+12-30\)
<=> \(25x-80x-24x=12-30-10-10\)
<=> \(-79x=-38\)
<=> \(x=\dfrac{-38}{-79}\)
\(x=\dfrac{38}{79}\)
b. \(x-\dfrac{2x-5}{5}+\dfrac{x+8}{6}=7+\dfrac{x-1}{3}\)
<=> \(30\cdot x-6\left(2x-5\right)+5\left(x+8\right)=30\cdot7+10\left(x-1\right)\)
<=> \(30x-12x+30+5x+40=210+10x-10\)
<=> \(30x-12x+5x-10x=210-10-30-40\)
<=> \(13x=130\)
<=> \(x=\dfrac{130}{13}\)
\(x=10\)
c. \(\dfrac{x+1}{15}+\dfrac{x+2}{7}+\dfrac{x+4}{4}+6=0\)
<=> \(28\left(x+1\right)+60\left(x+2\right)+105\left(x+4\right)+420\cdot6=0\)
<=> \(28x+28+60x+120+105x+420+2520=0\)
<=> \(28x+60x+105x=-28-120-420-2520\)
<=> \(193x=-3088\)
<=> \(x=\dfrac{-3088}{193}\)
\(x=-16\)
d. \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)
<=> \(6783\left(x-342\right)+5985\left(x-323\right)+5355\left(x-300\right)+4845\left(x-273\right)=101745\cdot10\)
<=> \(6783x-2319786+5985x-1933155+5355x-1606500+4845x-1322685=1017450\)
<=> \(6783x+5985x+5355x+4845x=1017450+2319786+1933155+1606500+1322685\)
<=> \(22968x=8199576\)
<=> \(x=\dfrac{8199576}{22968}\)
\(x=357\)
1.a) Dễ nhận thấy đề toán chỉ giải được khi đề là tìm x,y. Còn nếu là tìm x ta nhận thấy ngay vô nghiệm. Do đó: Sửa đề: \(\left|x-3\right|+\left|2-y\right|=0\)
\(\Leftrightarrow\left|x-3\right|=\left|2-y\right|=0\)
\(\left|x-3\right|=0\Rightarrow\left\{{}\begin{matrix}x-3=0\\-\left(x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) (1)
\(\left|2-y\right|=0\Rightarrow\left\{{}\begin{matrix}2-y=0\\-\left(2-y\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\) (2)
Từ (1) và (2) có: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x_1=3\\x_2=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y_1=2\\y_2=-2\end{matrix}\right.\end{matrix}\right.\)
a) \(\dfrac{-3}{5}+\dfrac{7}{21}+\dfrac{-4}{5}+\dfrac{7}{5}\)
\(=\left(-\dfrac{3}{5}+\dfrac{-4}{5}+\dfrac{7}{5}\right)+\dfrac{7}{21}\)
\(=0+\dfrac{7}{21}\)
\(=\dfrac{7}{21}\)
b) `-3/17 + ( 2/3 + 3/17)`
` = -3/17 + 2/3 + 3/17`
` = 2/3 + ( -3/17 +3/17)`
` = 2/3 + 0`
` = 2/3`
c)
` -5/21 + ( -16/21 +1)`
\(=\dfrac{-5}{21}+\dfrac{-16}{21}+1\)
\(=\left(\dfrac{-5}{21}+\dfrac{-16}{21}\right)+1\)
\(=-1+1=0\)
a. \(\left(\dfrac{-2}{7}+\dfrac{4}{7}\right)+\dfrac{1}{7}=\dfrac{2}{7}+\dfrac{1}{7}=\dfrac{3}{7}\)
b. \(\left(\dfrac{-8}{19}+\dfrac{27}{19}\right)+\left(\dfrac{-4}{21}+\dfrac{-17}{21}\right)+\dfrac{-12}{16}=\dfrac{19}{19}+\dfrac{-21}{21}+\dfrac{-12}{16}\)
\(=1+\left(-1\right)+\dfrac{-12}{16}=\dfrac{-12}{16}\)
c. \(\dfrac{-3}{7}+\dfrac{-11}{13}+\dfrac{-2}{13}+\dfrac{3}{7}+1=\left(\dfrac{-3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{-11}{13}+\dfrac{-2}{13}\right)+1=0-1+1=0\)
-2/7 + 2/7 : 3/5
= -2/7 + 2/7. 3/5
= -2/7 + 35/6
= -12/42 + 245/42
= -233/42
= (-4/21 - 17/21) + (-8/19 + 27/19)
= - 13/21 + -19/19
= (-13/21)+ (-1)
= (-13/21) + (-1/1)
= (-13/21) + (-13/21)
= - 26/21
=6/5. (3/13 - 16/13)
= 6/5. (-13/13)
=6/5. (-1)
=6/5. (-1/1)
=6/5. (-6/5)
=(-36/25)
\(\dfrac{21}{24}\cdot\dfrac{2}{11}:\dfrac{9}{8}=\dfrac{21}{24}\cdot\dfrac{2}{11}\cdot\dfrac{8}{9}=\dfrac{16}{99}\)
\(\dfrac{17}{9}\cdot\dfrac{5}{6}:\dfrac{12}{13}=\dfrac{17}{9}\cdot\dfrac{5}{6}\cdot\dfrac{13}{12}=\dfrac{1105}{648}\)
a) Ta có: \(\dfrac{2}{3}x-1=\dfrac{3}{2}\)
\(\Leftrightarrow x\cdot\dfrac{2}{3}=\dfrac{5}{2}\)
hay \(x=\dfrac{5}{2}:\dfrac{2}{3}=\dfrac{5}{2}\cdot\dfrac{3}{2}=\dfrac{15}{4}\)
b) Ta có: \(\left|5x-\dfrac{1}{2}\right|-\dfrac{2}{7}=25\%\)
\(\Leftrightarrow\left|5x-\dfrac{1}{2}\right|=\dfrac{1}{4}+\dfrac{2}{7}=\dfrac{15}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\dfrac{1}{2}=\dfrac{15}{28}\\5x-\dfrac{1}{2}=\dfrac{-15}{28}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{29}{28}\\5x=\dfrac{-1}{28}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{29}{140}\\x=\dfrac{-1}{140}\end{matrix}\right.\)
c) Ta có: \(\dfrac{x-3}{4}=\dfrac{16}{x-3}\)
\(\Leftrightarrow\left(x-3\right)^2=64\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=8\\x-3=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-5\end{matrix}\right.\)
d) Ta có: \(\dfrac{-8}{13}+\dfrac{7}{17}+\dfrac{21}{31}\le x\le\dfrac{-9}{14}+4-\dfrac{5}{14}\)
\(\Leftrightarrow\dfrac{3246}{6851}\le x\le3\)
\(\Leftrightarrow x\in\left\{1;2;3\right\}\)
a/
\(\Leftrightarrow A=\dfrac{3}{8}xy^2+B-\dfrac{5}{6}x^2y+\dfrac{3}{4}x^2y-\dfrac{5}{8}xy^2\\ \Leftrightarrow A-B=-\dfrac{1}{12}x^2y-\dfrac{1}{4}xy^2\)
b/
\(\Leftrightarrow A-B=5xy^3-\dfrac{5}{8}yx^3-\dfrac{21}{4}xy^3+\dfrac{3}{7}x^3y\\ \Leftrightarrow A-B=-\dfrac{1}{4}xy^3-\dfrac{11}{56}x^3y\)
`a)3/5xx17/21+17/21xx2/5`
`=17/21xx(3/5+2/5)`
`=17/21xx1=17/21`
`b)(8/5+5/6):7/6`
`=(48/30+25/30)xx6/7`
`=73/30xx6/7`
`=73/35`