Cho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cânc)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độa) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMDb)Tia MD cắt tia BA tại H, chứng minh tam giác DHC...
Đọc tiếp
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
Cho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHCCho tam giác ABC có góc A=80 độ:B=60 độ
a) Trên BC lấy điểm M sao cho BM=BA. Tia phân giác góc B cắt AC tại D. Chứng minh: tam giác BAD= tam giác BMD
b)Tia MD cắt tia BA tại H, chứng minh tam giác DHC cân
c)Chứng minh BD>AM và tính số đo góc DHC
d)
Xét tam giác AMB có ABM<AMB(60 độ < 80 độ)
=>AM<AB (1)
Xét tam giác DAB có ADB<DAB( 70 độ<80 đô)
=> AB<BD (2)
Từ (1) và (2)
=> AM<BD ( đpcm)
Còn vẽ hình bạn tự vẽ nha, cũng không khó lắm đâu, vẽ trên máy tính thì khó thôi)
a) C=180-80-60=40( độ)
Tam giác ABC có C<B<A
=> AB<AC<BC
b) Xét tam giác BAD và tam giác BMD có
BA=BM( giả thiết)
DBA=DBM ( vì tia BD là phân giác của góc ABC)
Cạnh BD cung
=> \(\Delta BAD=\Delta BMD\left(c.g.c\right)\)
c) Có \(\Delta BAD=\Delta BMD\)( theo câu b)
=>DA=DM ( 2 cạnh tương ứng)
Góc DAB= gócDMB ( 2 góc tương ứng) ( Xin OLM cho bổ sung vào hệ thống kí hiệu góc để viết cho tiện)
=> Góc DMC= góc DAH ( 2 góc kề bù của 2 góc bằng nhau)
Xét tam giác DAH và tam giác DMC có
góc CDM= góc HAD ( 2 góc đối đỉnh)
DA=DM
DAH=DMC
=>\(\Delta DAH=\Delta DMC\left(g.c.g\right)\)
=> DH=DC ( 2 cạnh tương ứng)
=> tam giác DHC cân tại D
Vì BD là phân giác của góc ABC nên góc DBA=góc DBM=60:2=30 độ
Có ADB=180-80-30=70 độ
MDB=180-80-30=70 độ ( vì góc DMB= góc DAB= 80 độ)
=> góc MDA=MDB+ADB=70+70=140 độ
Ta có CDH=MDA=140 độ ( 2 góc đối đỉnh)
=> DHC = \(\frac{180-140}{2}=20\) độ