Tìm điều kiện của tham số m để phương trình ( m2 - 4 ) x2 + (m-2) x + 3 = 0 là phương trình bậc nhất một ẩn?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,để PT trở thành bậc nhất một ản thì m-3\(\ne0\Leftrightarrow m\ne3\)
thay x=2 vào biểu thức ta có m=-143(tm)
(2m - 1)x + 3 - m = 0 là phương trình bậc nhất một ẩn
⇔ 2m - 1 ≠ 0
⇔ m ≠ 1/2
a: Để đây là phương trình bậc nhất một ẩn thì m+3<>0
hay m<>-3
b: Để đây là phươg trình bậc nhất một ẩn thì m<>0
Để phương trình (2m-1)x+3-m=0 (1) là phương trình bậc nhất một ẩn thì :
\(\Rightarrow a\ne0\)
\(\Leftrightarrow2m-1\ne0\)
\(\Leftrightarrow2m\ne1\)
\(\Leftrightarrow m\ne\frac{1}{2}\)
Vậy \(m\ne\frac{1}{2}\)thì phương trình (1) là phương trình bậc nhất một ẩn
\(\Leftrightarrow m\ne\frac{1}{2}\)\(\Leftrightarrow m\ne\frac{1}{2}\)
Để đây làpt bậc nhất 1 ẩn thì m^2-4=0 và m-2<>0
=>m=-2