Cho đa thức f(x)=\(\left(x+2\right)^{2021}\).Biết rằng sau khi khai triển và thu gọn ta được:
f(x)=\(a_{2021}\)\(x^{2021}\)+\(a_{2020}\)\(x^{2020}\)+...+\(a_3\)\(x^3\)+\(a_2\)\(x^2\)\(a_1\)\(x\)+\(a_0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)
=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)
<=> \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
\(f\left(1\right)=a_{2017}+a_{2016}+...+a_3+a_2+a_1+a_0\)
\(f\left(-1\right)=-a_{2017}+a_{2016}+...-a_3+a_2-a_1+a_0\)
\(f\left(1\right)+f\left(-1\right)=2\left(a_{2016}+a_{2014}+...+a_2+a_0\right)\)
\(S=\frac{f\left(1\right)+f\left(-1\right)}{2}=\frac{3^{2017}+1}{2}\)
\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)
Số hạng tổng quát trong khai triển:
\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)
\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)
Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)
\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)
Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)
\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)
\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)
Ta có \(f\left(7\right)=15\Rightarrow f\left(7\right)-15=0\Rightarrow f\left(x\right)-15=P\left(x\right).\left(x-7\right)\)
\(\Rightarrow f\left(15\right)-15=P\left(x\right).8\Rightarrow-15=P\left(x\right).8\Rightarrow P\left(x\right)=\dfrac{-3}{4}\). (vô lí vì P(x) có các hệ số đều nguyên).
Vậy...
Em kiểm tra lại đề bài nhé!
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=.....=\frac{a_{2019}}{a_{2020}}=\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\)
=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2019}}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
=> \(\frac{a_1}{a_{2020}}=\left(\frac{a_1+a_2+...+a_{2019}}{a_2+a_3+...+a_{2020}}\right)^{2019}\)
Thay x = 1
=> f(1) = \(\left(1^2+1+2\right)^{20}\)= \(a_0.1^{40}+a_1.1^{39}+a_2.1^{38}+...+a_{39}.1+a_{40}\)
= \(a_0+a_1+a_2+...+a_{39}+a_{40}\)= S
=> S = \(\left(1^2+1+2\right)^{20}\)
=> S = \(4^{20}\)