K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2018

Ta có:

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)

\(\Rightarrow C< D\)

Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)

Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)

Hay \(C\cdot C< \frac{1}{10001}\)

\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)

Vậy \(C< \frac{1}{100}\left(đpcm\right)\)

22 tháng 6 2017

Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)

\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)

Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)

Mặt khác ta thấy:

\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)

\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)

\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)

Rút gọn  phép tính \(C.N\)

\(C.N=\frac{1}{10001}\)

\(C.C< N\Rightarrow C.C< C.N\)

Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)

\(\Rightarrow C< \frac{1}{10000}\)(đpcm)

30 tháng 4 2018

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

30 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)

24 tháng 4 2016

đặt A= \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)

B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{10000}{10001}\)

Lấy A.B= \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{10000}{10001}=\frac{1}{10001}\)

mặt khác

Ta có

\(\frac{1}{2}< \frac{2}{3}\\\)

\(\frac{3}{4}< \frac{4}{5}\)

  ....

\(\frac{9999}{10000}< \frac{10000}{10001}\)

=> A<B

=> A.A<A.B

=>A2<\(\frac{1}{10001}< \frac{1}{10000}\)

=>A<\(\sqrt{\frac{1}{10000}}=\frac{1}{100}\)

Vậy \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)<\(\frac{1}{100}\)

ĐPCM

24 tháng 4 2016

cái dấu\(\sqrt{ }\) mik chưa học bạn sửa cái chỗ gần về sau hộ mik nhé

12 tháng 3 2017

Đặt : 

\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)

Đặt :

B=\(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{9998}{9999}.\frac{10000}{10000}\)

Ta thấy " A<B 

\(\Rightarrow A.A< A.B=\frac{1}{100^2}\\ \Rightarrow A^2< \frac{1}{100^2}\\ \Rightarrow A< \frac{1}{100}\)

1 tháng 4 2017

Đặt \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{9999}{10000}\)\(\left(A>0\right)\)

.Và \(B=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\)\(\left(B>0\right)\)

Mặt khác :

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

...    ...  ...

\(\frac{9999}{10000}< \frac{10000}{10001}\)

Nhân tất cả vế theo vế \(\Rightarrow A< B\Rightarrow A^2< A.B\left(2\right)\)

(1),(2) \(\Rightarrow A^2< \frac{1}{10001}\Rightarrow A< \sqrt{\left(\frac{1}{10001}\right)}< \sqrt{\left(\frac{1}{10000}\right)}=\frac{1}{100}\left(ĐPCM\right)\)

21 tháng 4 2016

ta có :\(\frac{1}{5^2}<\frac{1}{4.5}\)

 \(\frac{1}{6^2}<\frac{1}{5.6}\)

\(\frac{1}{7^2}<\frac{1}{6.7}\)

.....

\(\frac{1}{100^2}<\frac{1}{99.100}\)

\(\Rightarrow A<\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}\)

                \(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}<\frac{1}{4}\)     (1)

Ta có : \(\frac{1}{5.6}<\frac{1}{5^2}\)'

\(\frac{1}{6.7}<\frac{1}{6^2}\)

....\(\frac{1}{100.101}<\frac{1}{100^2}\)

\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\) <A 

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{100}-\frac{1}{101}\) <A

\(\frac{1}{5}-\frac{1}{101}\) <A

mà \(\frac{96}{5.101}=\frac{96}{505}>\frac{96}{576}\)

hay \(A>\frac{1}{6}\)                                     (2)
từ (1); và (2) suy ra \(\frac{1}{6}<\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+..+\frac{1}{100^2}<\frac{1}{4}\) (đpcm)

đây là cách dễ hiểu nhất nhé

21 tháng 4 2016

bài này dễ lắm 8h30'  mình giải cho đang bận

31 tháng 3 2017

quá dễ