tìm 1 nghiệm của đa thức Q(x)= x^3 +ax^2 +bx +c biết rằng Q(x) có nghiệm và a-3b+9c=1/3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra ta có: a+2b+4c+1/2=0
(cái này là mẹo nhé: Nhận thấy đơn thức c ko có biến x nên ta sẽ lấy 4 làm thừa số chung.)
=> 4(1/4.a + 1/2.b+c+1/8) = 0
<=> 1/4.a + 1/2.b + c + 1/8 = 0
<=> (1/2)^3 + (1/2)^2. a +1/2.b + c =0
<=> P(1/2) = 0
Vậy 1/2 là 1 nghiệm của đa thức P(x)
Nhớ cái mẹo nhé! ^^
Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó
Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)
\(=x^3+mx^2+xn-kx^2-kmx-kn\)
\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)
Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)
Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:
\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)
\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)
\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)
\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)
\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)
Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)
Biết đa thức f(x)=ax3+bx2+cx+d(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Theo đề:
f(1)=a+b+c+d=0
f(-1)=-a+b-c+d=0
=>f(1)+f(-1)=2(b+d)=0 => b+d = 0 => b=-d (1)
f(1)-f(-1)=2(a+c)=0 => a+c=0 => a=-c(2)
Thay (1),(2) vào pt:
f(x)= -cx^3-dx^2+cx+d = cx(1 - x^2) + d(1 - x^2) = (cx + d)(1 - x)(1 + x) =0
=> x=1,x=-1, x= -d/c
Vậy nghiệm thứ 3 của f(x) là x= -d/c
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
\(a)\) Ta có :
\(x^2+x=0\)
\(\Leftrightarrow\)\(x\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy nghiệm của đa thức \(H\left(x\right)=x^2+x\) là \(x=-1\) hoặc \(x=0\)
\(b)\) Ta có :
\(\left|x\right|\ge0\)
\(\Rightarrow\)\(\left|x\right|+1\ge0+1=1>0\)
Vậy đa thức \(Q\left(x\right)=\left|x\right|+1\) vô nghiệm ( hoặc không có nghiệm )
Chúc bạn học tốt ~
1/a/Cho x^2+x=0
x(x+1)=0
=>x=0 hoặc x+1=0
x=-1
Vậy nghiệm của H(x) là 0;-1
b/Ta có:\(\left|x\right|\ge0\Rightarrow\left|x\right|+1\ge1>0\)0
Vậy Q(x) vô nghiệm
2/P(x)=ax^2+5x-3
P(12)=a.12^2+5.12-3=0
a.144+60-3=0
144a=-57
a=-57:144
a=-19/48