So sánh hai phân số
\(A=\dfrac{10^{2021}+1}{10^{2022}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10A=\dfrac{10^{2023}+10}{10^{2023}+1}=1+\dfrac{9}{10^{2023}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
mà 10^2023+1>10^2022+1
nên A<B
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
Ta có:
\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )
Suy ra: \(A>B\)
Áp dụng tính chất : Nếu \(\dfrac{a}{b}\) < 1 thì \(\dfrac{a}{b}\) < \(\dfrac{a+n}{b+n}\) ( a ϵ N; b; n ϵ N* )
Ta có \(B=\dfrac{10^{2021}+1}{10^{2022}+1}< \dfrac{10^{2021}+10}{10^{2022}+10}=\dfrac{10\left(10^{2020}+1\right)}{10\left(10^{2021}+1\right)}=\dfrac{10^{2020}+1}{10^{2021}+1}=A\)
Vậy A > B
A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) ⇒ 10\(\times\) A = \(\dfrac{10^{2020}+1}{10^{2021}+1}\) \(\times\) 10
10A = \(\dfrac{10^{2021}+10}{10^{2021}+1}\) =1+\(\dfrac{9}{10^{2021}+1}\)
B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) ⇒ 10 \(\times\) B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\) \(\times\) 10
10B = \(\dfrac{10^{2022}+10}{10^{2022}+1}\) = 1 + \(\dfrac{9}{10^{2022}+1}\)
Vì \(\dfrac{9}{10^{2021}+1}\) > \(\dfrac{9}{10^{2022}+1}\)
Vậy 10A > 10B ⇒ A > B
\(\dfrac{1}{10}A=\dfrac{10^{2023}+5}{10^{2023}+50}=1-\dfrac{45}{10^{2023}+50}\)
\(\dfrac{1}{10}B=\dfrac{10^{2022}+5}{10^{2022}+50}=1-\dfrac{45}{10^{2022}+50}\)
10^2023+50>10^2022+50
=>-45/10^2023+50<-45/10^2020+50
=>1/10A<1/10B
=>A<B
Lời giải:
$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$
$\Rightarrow A>B$