K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)

b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)

c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)

 

1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

7 tháng 1 2018

abcdeg phải chia hết cho 13 chứ bn

22 tháng 3 2017

Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg

Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29

31 tháng 3 2021

a) 135, * = 5

b) 672, * = 2

23 tháng 6 2019

a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(=100100a+10010b+1001c\)

\(=1001\cdot\overline{abc}\)

\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13

Đêm rồi không biết c/m chia hết cho 3 :)

b) \(\overline{aaa}=111\cdot a\)chia hết cho a

c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)

23 tháng 6 2019

sửa đề

\(a,\overline{abcabc}⋮7;11;13\)

=\(\overline{abc}.1000+\overline{abc}\)

=\(\overline{abc}\left(1000+1\right)\)

= \(\overline{abc}.1001\)

= \(\overline{abc}.7..11.13\)

=> \(\overline{abcabc}⋮7;11;13\)

\(b,\overline{aaa}:a=111\)

\(=>\overline{aaa}⋮a\)

\(c,\overline{abc}⋮\overline{abc}\)

Do \(\overline{abc}=\overline{abc}\)

=> \(\overline{abc}⋮\overline{abc}\)