K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

Gọi đa thức dư khi chia f(x) cho \(\left(x-2\right)\left(x-3\right)\) là \(ax+b\)

\(\Rightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+ax+b\left(1\right)\)

Lại có \(f\left(x\right):\left(x-2\right)R5\Leftrightarrow f\left(2\right)=5;f\left(x\right):\left(x-3\right)R7\Leftrightarrow f\left(3\right)=7\)

Thế vào \(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}f\left(2\right)=2a+b=5\\f\left(3\right)=3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

\(\Leftrightarrow f\left(x\right)=\left(x-2\right)\left(x-3\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=\left(x^2-5x-6\right)\left(x^2-1\right)+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-x^2-5x^3+5x-6x^2+6+2x+1\\ \Leftrightarrow f\left(x\right)=x^4-5x^3-7x^2+7x+7\)

16 tháng 4 2021

undefined

16 tháng 4 2021

Hình như chỗ cuối cô làm sai hay sao í ạ, tại -1/2+5/2-2=0 luôn rồi mà ạ?!

AH
Akai Haruma
Giáo viên
31 tháng 3 2023

Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.

Theo bài ra ta có:

$f(2)=6067$

$f(-3)=-4043$

$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$

Cho $x=2$ thì:

$f(2)=0.Q(2)+2a+b=2a+b$

$\Leftrightarrow 6067=2a+b(1)$

Cho $x=-3$ thì:

$f(-3)=0.Q(-3)-3a+b=-3a+b$

$\Leftrightarrow -4043=-3a+b(2)$

Từ $(1); (2)\Rightarrow a=2022; b=2023$

Vậy đa thức dư là $2022x+2023$