cho tam giác ABC cân tại A. kẻ AH vuông góc với BC(h thuộc bc). Gọi N là trung điểm của AC
a) So sánh AB và AH
b)Gọi G là giao điểm của AH và BN,M là trung diểm của AB
chứng minh: MC=NB
c)Trên tia đối của tia NB lấy diểm K sao cho NK=NG. CHứng minh AG=CK, từ đó suy ra BC +AG>4MG
a) trong ΔABC, có góc AHB là góc vuông
góc ABH là góc nhọn
⇒ góc AHB > góc ABH
⇒ AB > AH
b) M là trung điểm của AB và N là trung điểm của AC, mà AB = AC (2 cạnh bên của tam giác cân) ⇒ MB = NC
xét tam giác MBC và tam giác NCB, ta có :
MB = NC (cmt)
góc B = góc C (2 góc đáy của 1 tam giác cân)
BC là cạnh chung
⇒ tam giác MBC = tam giác NCB (c-g-c)
⇒ MC = NB (2 cạnh tương ứng)
c) xét tam giác NAG và tam giác NCK , ta có :
NA = NC (vì N là trung điểm của cạnh AC)
góc NAG = góc NCK (đối đỉnh)
NG = NK (gt)
=> tam giác NAG = tam giác NCK (c-g-c)
=> AG = CK (2 cạnh tương ứng)