Cho tam giác ABC , lấy điểm D thay đổi nằm trên cạnh BC (D không trùng B và C).Trên tia AD lấy điểm P sao cho D nằm giữa A và P đồng thời DA.DP = DB.DC . Đường tròn T đi qua hai điểm A,D lần lượt cắt cạnh AB ,AC tại F và E . Chứng minh rằng : Tứ giác ABPC nội tiếp giúp mình với huhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)
a) Xét \(\Delta_vMDB\) và \(\Delta_vNEC\) có :
BD = CE(đầu đề ghi BD = BE là sai rồi nhá)
\(\widehat{B}=\widehat{C}\)(tam giác ABC cân tại A)
=> \(\Delta_vMDB=\Delta_vNEC\)(cgv - gn)
=> DM = EN(hai cạnh tương ứng)
b) Xét \(\Delta_vMDI\) và \(\Delta_vNEI\)có :
DM = EN(theo câu a)
\(\widehat{MDI}=\widehat{NEI}\)(đối đỉnh)
=> \(\Delta_vMDI=\Delta_vNEI\left(cgv-gn\right)\)
=> IM = IN(hai cạnh tương ứng)
=> BC cắt MN tại I
=> I là tđ của MN
c) Gọi H là chân đường vuông góc kẻ từ A xuống BC
Xét \(\Delta_vAHB\) và \(\Delta_vAHC\)có :
AB = AC(tam giác ABC cân tại A)
AH chung
=> \(\Delta_vAHB=\Delta_vAHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)
Gọi O là giao điểm của AH với đường thẳng vuông góc với MN kẻ từ I
Xét tam giác OAB và tam giác OAC có :
OA chung
AB = AC(tam giác ABC cân tại A)
góc B = góc C(tam giác ABC cân tại A)
=> tam giác OAB = tam giác OAC(c.g.c)
=> góc OBC = góc OCA (1)
Xét tam giác vuông OIM và tam giác vuông OIN có :
OI chung
IM = IN(theo câu b)
=> tam giác vuông OIM = tam giác vuông OIN(hai cạnh góc vuông)
=> OM = ON(hai cạnh tương ứng)
Xét tam giác OBM và tam giác OCN có :
OM = ON(cmt)
OB = OC(tam giác OAB = tam giác OAC)
BM = CN(tam giác MDB = tam giác NEC)
=> tam giác OBM = tam giác OCN(c.c.c)
=> góc OBM = góc OCM (2)
Từ (1) và (2) => góc OCA = góc OCN = 90 độ , do đó \(OC\perp AC\)
Vậy điểm O cố định
Câu a, DM = EN chứ k phải DM = ED
DA*DP=DB*DC
=>DA/DC=DB/DP
=>ΔDAB đồng dạng với ΔDCP
=>góc BAD=góc PCD
=>ABPC nội tiếp