Tìm x biết:x-2x+3x-4x+...+2021x=2022
giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)
\(=4x^2-20x+25-4x^2+20x\)
=25
b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)
\(=16-9x^2+9x^2+6x+1\)
=6x+17
c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)
\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)
=1
d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)
\(=\left(2021x-2020-2020x+2021\right)^2\)
\(=\left(x+1\right)^2\)
\(=x^2+2x+1\)
\(x+x:0,5+x:0,25+x:0,125=2022\)
\(x\text{×}1+x\text{×}2+x\text{×}4+x\text{×8}=2022\)
\(x\text{×}\left(1+2+4+8\right)=2022\)
\(x\text{×}15=2022\)
\(x=2022:15\)
\(x=134,8\)
a) ĐK : x khác 2/3 ; x khác 0
\(\frac{x+5}{3x-2}=\frac{A}{x\left(3x-2\right)}\)
\(\Leftrightarrow\frac{x\left(x+5\right)}{x\left(3x-2\right)}=\frac{A}{x\left(3x-2\right)}\)
\(\Leftrightarrow A=x^2+5x\)
b) \(\frac{5x+10}{4x-8}\cdot\frac{4-2x}{x+2}\)
\(=\frac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\frac{2\left(2-x\right)}{\left(x+2\right)}\)
\(=\frac{-5}{2}\)
Bài 1:
\(a,=\left(2021-2022\right)^2=1\\ b,=3y-xy-y^2+3x-3y+xy-y^2=3x-2y^2\)
Bài 2:
\(a,\Leftrightarrow x\left(x-2021\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2021\end{matrix}\right.\\ b,\Leftrightarrow\left(x-3\right)\left(x^2-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\end{matrix}\right.\)
Bài 4:
\(M=\left(4x^2-4x+1\right)+\left(y^2+6y+9\right)+2022\\ M=\left(2x-1\right)^2+\left(y+3\right)^2+2022\ge2022\\ M_{min}=2022\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Ta có : \(x=2022\Rightarrow x-1=2021\)
hay \(B=x^{10}-\left(x-1\right)x^9-\left(x-1\right)x^8-...-\left(x-1\right)x^2-\left(x-1\right)x+5\)
\(=x^{10}-x^{10}+x^9-x^9+x^8-...-x^3+x^2-x^2+x+5\)
\(=x+5\Rightarrow B=2022+5=2027\)
Vậy với x = 2022 thì B = 2027
Bài 2:
c: \(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
x = 2020 => 2021 = x + 1
x2020 - 2021x2019 + 2021x2018 - 2021x2017 + ... + 2021x2 - 2021x + 1
= x2020 - ( x + 1 )x2019 + ( x + 1 )x2018 - ( x + 1 )x2017 + ... + ( x + 1 )x2 - ( x + 1 )x + 1
= x2020 - x2020 - x2019 + x2019 + x2018 - x2018 - x2017 + ... + x3 + x2 - x2 - x + 1
= -x + 1 = -2020 + 1 = -2019
Vậy giá trị của biểu thức = -2019
Bài 1:
\(a,=6x^2+19x-7-6x^3-4x^2+7x=-6x^3+2x^2+26x-7\\ b,B=26\cdot\left(63^2+63\cdot37+37^2\right):26+63\cdot37\\ =63^2+63\cdot37+37^2+63\cdot37\\ =\left(63+37\right)^2=100^2=10000\)
Bài 2:
\(a,=x\left(y^2-25\right)=x\left(y-5\right)\left(y+5\right)\\ b,=\left(x-y\right)\left(x+2\right)\\ c,=\left(x-3\right)\left(x^2-4\right)=\left(x-2\right)\left(x-3\right)\left(x+2\right)\)
Em tách ra thành:
x(1+3+5+...+2021)-x(2+4+...+2020)=2022.
Sau đó giải bình thường.
Chúc em học tốt!