ting giá trị biểu thức sau :
C=(1+1/1x3)(1+1/2x4)(1+1/3x5)....(1+1/2014x2016)
giúp mình nhanh nhé mình tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{9}\right)\)
\(=\frac{1}{2}.\frac{8}{9}\)
\(=\frac{4}{9}\)
#)Giải :
\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\)
\(\Rightarrow2S=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\)
\(\Rightarrow2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\)
\(\Rightarrow2S=1-\frac{1}{9}=\frac{8}{9}\)
\(S=\frac{8}{9}:2=\frac{4}{9}\)
#~Will~be~Pens~#
kiến thức lớp 8 chắc mới làm dc
\(A=\left(1+\frac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(1+\frac{1}{\left(3-1\right)\left(3+1\right)}\right)+....+\frac{1}{\left(100-1\right)\left(100+1\right)}\)
\(A=\left(1+\frac{1}{2^2}\right)\left(1+\frac{1}{3^2}\right)......\left(1+\frac{1}{100^2}\right)\)
ok tự giải típ nhé
A=(1+1/1.3)+........+(1+1/99.100)
=>A=[ (1.3+1)/(1.3 ) ] .[ (2.4+1)/(2.4) ] .... [ (99.101+1)/(99.101) ]
=>A=( 4/1.3 ).( 9/2.4)......( 10000/99.101)
=>A=( 22/1.3).( 32/2..4).......( 1002/99.101)
=>A=\(\frac{2^2.3^2........99^2.100^2}{1.3.2.4.....99.101}\)
=>A=\(\frac{2.3....100.2.3.....100}{1.2.....99.3.4.....101}\)
=>A=\(\frac{100.2}{101}\)
=>A=\(\frac{200}{101}\)
Vậy A=\(\frac{200}{101}\)
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
Đặt Tổng trên là A
A = 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/2005.2007
2. A = 2 . ( 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/2005.2007 )
2A = 2/1.3 + 2/3.5 + 2/5.7 + ..... + 2/2005.2007
2A = 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/2005 - 1/2007
2A = 1 - 1/2007
2A = 2006/2007
A = 2006/2007 : 2
A = 2006/4014
- Hok Tot -
\(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+....+\dfrac{1}{2005\times2007}\)
= \(\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2005}-\dfrac{1}{2007}\right)\)
= \(\dfrac{1}{2}\times\left(\dfrac{1}{1}-\dfrac{1}{2007}\right)\)
= \(\dfrac{1}{2}\times\dfrac{2006}{2007}\)
= \(\dfrac{1003}{2007}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)
\(\Rightarrow S=\frac{11}{20}\)
sửa đề câu a và câu b nhá , mik nghĩ đề như này :
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
= \(\frac{1}{1}-\frac{1}{215}\)
\(=\frac{214}{215}\)
b, đặt \(A=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{213\cdot215}\)
\(A\cdot2=\frac{2}{1\cdot3}+\frac{2}{3.5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{213\cdot215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{213}-\frac{1}{215}\)
\(A\cdot2=\frac{1}{1}-\frac{1}{215}\)
\(A\cdot2=\frac{214}{215}\)
\(A=\frac{214}{215}:2\)
\(A=\frac{107}{215}\)