Chứng tỏ rằng đa thức sau vô nghiệm -3x^6-2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-3x^4<=0 với mọi x
=>-3x^4-10<=-10<0 với mọi x
=>Đa thức vô nghiệm
\(x^2+3x+5=0\)
\(\Rightarrow x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+5=0\)
\(\Rightarrow\left(x^2+2.x.\frac{3}{2}+\frac{9}{4}\right)+\frac{11}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=-\frac{11}{4}\)(vô lý)(vì số bình phương luôn lớn hơn 0)
VẬY ĐA THỨC TRÊN VÔ NGHIỆM
Vậy là xong rùi, nhớ
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
\(a)\)\(Cho\)\(x^2+3=0\)
\(x^2\) \(=0-3\)
\(x^2\) \(=-3\)( vô lý )
Vì: Mũ chẵn chuyển thành số âm
=> Đa thức vô nghiệm
\(b)\)\(Cho\)\(-3x^4-5=0\)
\(-3x^4\) \(=0+5\)
\(-3x^4\) \(=5\)
\(x^4\) \(=5:\left(-3\right)\)
\(x^4\) \(=\frac{-5}{3}\)( Vô lý )
Vì: Mũ chẵn chuyển thành số không âm
=> Đa thức vô nghiệm
Đặt f(x)= \(x^2+4x+5\) \(=x^2+2x+2x+4+1\)
\(=\left(x^2+2x\right)+\left(2x+4\right)+1\)
\(=x\left(x+2\right)+2\left(x+2\right)+1\)
\(=\left(x+2\right)\left(x+2\right)+1\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\)
\(\Rightarrow f\left(x\right)>0\forall x\)
=> Đa thức f(x) trên vô nghiệm
x^4-2x^2+6
=x^4 - x^2 - x^2 +1 +5
=x^2(x^2-1)-(x^2-1) +5
=(x^2-1)(x^2-1) +5
=(x^2-1)^2 + 5\(\ge\)5 hay \(\ne\)0
Vậy x^4- 2x^2 +6 vô nghiệm
Ta có x\(^6\)\(\ge\)0 với mọi x
-3x\(^6\)\(\le\)0 với mọi x
nên -3x\(^6\)-2022 \(\le\)0 với mọi x
Vậy đa thức -3x\(^6\)-2022 vô nghiệm