K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)

=>300-x=0

=>x=300

26 tháng 2 2023

<=> 300-x/99+300-x/97+300-x/95=0

<=>(300-x).(1/99+1/97+1/95)=0

<=>300-x=0

<=>x=300

25 tháng 5 2021

`(201-x)/99+(203-x)/97+(205-x)/95+3=0`

`<=>(201-x)/99+1+(203-x)/97+1+(205-x)/95+1=0`

`<=>(300-x)/99+(300-x)/97+(300-x)/95=0`

`<=>(300-x)(1/99+1/97+1/95)=0`

`<=>300-x=0`

`<=>x=300`

Vậy `x=300`

25 tháng 5 2021

Sai đề.

Sửa đề: \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

Ta có: \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Leftrightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Leftrightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

mà \(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}>0\)

nên 300-x=0

hay x=300

Vậy:S={300}

10 tháng 2 2018

undefined

10 tháng 2 2018

undefined

14 tháng 12 2017

a) \(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}=\dfrac{x+100}{96}+\dfrac{x+100}{95}\)

\(\Rightarrow\dfrac{x+100}{98}+\dfrac{x+100}{97}-\dfrac{x+100}{96}-\dfrac{x+100}{95}=0\)

\(\Rightarrow\left(x+100\right)\left(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{96}-\dfrac{1}{95}\ne0\) nên \(x+100=0\Leftrightarrow x=-100\)

b) \(\dfrac{x+1}{1998}+\dfrac{x+2}{1997}=\dfrac{x+3}{1996}+\dfrac{x+4}{1995}\)

\(\Rightarrow\dfrac{x+1}{1998}+1+\dfrac{x+2}{1997}+1=\dfrac{x+3}{1996}+1+\dfrac{x+4}{1995}+1\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}=\dfrac{x+1999}{1996}+\dfrac{x+1999}{1995}\)

\(\Rightarrow\dfrac{x+1999}{1998}+\dfrac{x+1999}{1997}-\dfrac{x+1999}{1996}-\dfrac{x+1999}{1995}=0\)

\(\Rightarrow\left(x+1999\right)\left(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\right)=0\)

\(\dfrac{1}{1998}+\dfrac{1}{1997}-\dfrac{1}{1996}-\dfrac{1}{1995}\ne0\) nên \(x+1999=0\Leftrightarrow x=-1999\)

c) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)

\(\Rightarrow\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

\(\Rightarrow\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

\(\Rightarrow\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

\(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\ne0\) nên \(300-x=0\Leftrightarrow x=300\)

6 tháng 3 2018

a)\(\dfrac{201-x}{99}+\dfrac{203-x}{97}=\dfrac{205-x}{95}+3=0\)

<=>\(\left(\dfrac{201-x}{99}+1\right)+\left(\dfrac{203-x}{97}+1\right)+\left(\dfrac{205-x}{95}+1\right)=0\)

<=>\(\dfrac{201-x+99}{99}+\dfrac{203-x+97}{97}=\dfrac{205-x+95}{95}=0\)

<=> \(\dfrac{300-x}{99}+\dfrac{300-x}{97}=\dfrac{300-x}{95}=0\)

<=> \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

<=> 300 - x = 0

<=> x = 300

b) \(\dfrac{2-x}{2002}-1=\dfrac{1-x}{2003}-\dfrac{x}{2004}\)

<=> \(\dfrac{2-x}{2002}+1=\left(\dfrac{1-x}{2003}+1\right)+\left(\dfrac{x}{2004}+1\right)\){Cộng cả hai vế của phương trình với 2}

<=> \(\dfrac{2-x+2002}{2002}=\dfrac{1-x+2003}{2003}+\dfrac{-x+2004}{2004}\)

<=> \(\dfrac{2004-x}{2002}=\dfrac{2004-x}{2003}+\dfrac{2004-x}{2004}\)

<=> \(\dfrac{2004-x}{2002}-\dfrac{2004-x}{2003}-\dfrac{2004-x}{2004}=0\)

<=> \(\left(2004-x\right)\left(\dfrac{1}{2002}-\dfrac{1}{2003}-\dfrac{1}{2004}\right)=0\)

<=> 2004 - x = 0

<=> x = 2004.

8 tháng 3 2018

ủa câu b

từ hàng 1 đang dấu - xuống hàng 2 thành dấu cộng rồi

\(-\dfrac{x}{2014}\Rightarrow+\left(\dfrac{x}{2014}+1\right)\)

22 tháng 2 2020

Giải:

Ta có: \(\frac{201-x}{99}+\frac{205-x}{95}+\frac{203-x}{97}+3=0\)

\(\Leftrightarrow\frac{201-x}{99}+1+\frac{205-x}{95}+1+\frac{203-x}{97}+1=0\)

\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{95}+\frac{300-x}{97}=0\)

\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{95}+\frac{1}{97}\right)=0\)

\(\Leftrightarrow300-x=0\) (Vì \(\frac{1}{99}+\frac{1}{95}+\frac{1}{97}\ne0\))

\(\Leftrightarrow x=300\)

Vậy phương trình có nghiệm là \(x=300.\)

Chúc bạn học tốt@@

22 tháng 1 2022

a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\) 

⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)

⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)

⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0

\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:

x+2005=0 ⇔x=-2005

b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\) 

⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)

⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)

⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)

Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:

300-x=0 ⇔ x=300