Chọn ngẫu nhiên một số trong sáu số 30; 31; 32; 33; 34; 35. Tìm xác suất để:
a) A: "Chọn được số nhỏ hơn 40"
b) B: "Chọn được số có 3 chữ số"
c) C: " Chọn được số là số nguyên tố"
d) D: " Chọn được số là số chẵn"
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số đó là \(\overline{abcdef}\Rightarrow a+b+c+d+e+f=1+2+3+4+5+6=21\)
Mặt khác \(a+b+c=d+e+f-1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=10\\d+e+f=11\end{matrix}\right.\)
\(\Rightarrow\left(a;b;c\right)=\left(1;3;6\right);\left(1;4;5\right);\left(2;3;5\right)\)
Số số thỏa mãn: \(3.\left(3!.3!\right)=108\)
Xác suất: \(P=\dfrac{108}{6!}=\dfrac{3}{20}\)
n(S)=6!
Để thỏa mãn yêu cầu đề bài thì cần chọn ra 3 số có tổng là 12
=>Số trường hợp thỏa mãn là (1;5;6); (2;4;6); (3;4;5)
=>Có 3*3!*3!
=>P=3/20
a: A={30;31;32;33;34;35}
=>n(A)=6
=>P(A)=1
b: B=rỗng
=>P(B)=0
c: n(C)=1
=>P(C)=1/6
d: D={30;32;34}
=>n(D)=3
=>P(D)=3/6=1/2